DOI QR코드

DOI QR Code

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Quantity of 'Nunkeunheugchal' Rice

시비량과 재식밀도 변화에 따른 '눈큰흑찰'의 품질 및 수량변화

  • 배현경 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 오성환 (농촌진흥청 국립식량과학원) ;
  • 서종호 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 황정동 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 김상열 (농촌진흥청 국립식량과학원 남부작물부) ;
  • 오명규 (농촌진흥청 국립식량과학원 남부작물부)
  • Received : 2017.04.22
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

'Nunkeunheugchal' is a waxy black rice variety that has a large embryo. The quality of black rice depends on the anthocyanin content of the rice seed coat, which is mainly determined by cultivation environment. Factors that affect the anthocyanin content include nitrogen level, planting density, transplanting date and harvesting date. This study was carried out to investigate the optimum black rice cultivation conditions by examining the effects of different nitrogen levels and planting densities. An initial study was conducted to determine the optimum nitrogen level in which four levels of nitrogen were applied to the field (0, 4, 8 and 12 kg/10a). As the nitrogen contents were increased up to 8 kg/10a, there was a concomitant increase in rice yields. However, nitrogen levels greater than 8 kg/10a, the yield was maintained at the same level. Correlation analysis indicated that the optimum nitrogen level for maximum yield was 9.6 kg/10a. In addition, anthocyanin levels showed a trend similar to that of yield, with correlation analysis indicating that the optimum nitrogen level for maximum anthocyanin content is 10.6 kg/10a.On the basis of these results, a second study was conducted to determine the optimum combination of planting density and nitrogen level. The planting densities investigated were $30{\times}12$, $30{\times}14$, $30{\times}16$ and nitrogen levels were 7, 9 and 12 kg/10a. A high planting density ($30{\times}12cm$) was shown to produce higher numbers of tillers and yield. As calculated in the first study, a nitrogen level of 9 kg/10a shown to produce the highest anthocyanin content and yield. Collectively, the results of this study indicate that a planting density of $30{\times}12cm$ and a nitrogen level of 9 kg/10a is the optimal combination in terms of maximizing both rice yield and anthocyanin content.

본 실험은 거대배 흑미 품종인 눈큰흑찰의 효과적인 재배를 위한 적정질소시비량과 적정재식밀도를 구명하고자 2013년~2015년에 밀양에서 실시하였다. 1. 질소시비량이 0 kg/10a에서 8 kg/10a까지 증가하면 주당수수와 수당립수가 증가하여 현미수량이 증가하였지만 8 kg/10a에서 12 kg/10a까지 증가하여도 수량의 변화는 없었다. 회귀분석을 통해 얻어진 눈큰흑찰의 최대현미수량을 위한 적정 질소시비량은 9.6 kg/10a였다. 2. 질소시비량이 0 kg/10a에서 8 kg/10a까지 증가하면 안토시아닌의 함량은 높아졌으나 12 kg/10a까지 처리하였을 때는 오히려 감소하였다. 회귀분석을 통해 얻어진 눈큰흑찰의 최대 안토시아닌 수량을 위한 적정 질소시비량은 10.6 kg/10a였다. 3. 재식밀도가 증가함에 따라 수수는 증가하고 수당립수는 감소하였는데 밀도 증가에 따른 수수의 증가치가 수당립수의 감소치보다 높아 $30{\times}12cm$의 높은 재식밀도에서 가장 높은 수량을 보였다. 4. 질소시비량 7 kg/10a 수준에서는 재식밀도 차이에 따른 안토시아닌 함량의 차이가 없었고 9, 12 kg/10a 수준에서는 밀도가 높아질수록 안토시아닌 함량이 높아져 $30{\times}12cm$ 수준에서 가장 안토시아닌 함량이 높았다. 현미수량과 안토시아닌 함량을 함께 고려한 안토시아닌 생산량은 질소시비량 9 kg/10a, 재식밀도 $30{\times}12cm$에서 69.1 g/10a로 가장 높았다.

Keywords

References

  1. Chen P. N., W. H. Kuo, C. L. Chiang, H. L. Chiou, Y. S. Hsieh, and S. C. Chu. 2006. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions. 163: 218-229. https://doi.org/10.1016/j.cbi.2006.08.003
  2. Cho, M. H., Y. S. Paik, H. H. Yoon, and T. R. Hahn. 1996. Chemical structure of the major color component from a Korean pigmented rice variety. Agri. Chem. Biotech. 39(4): 304-308.
  3. Choi Y. H., H. M. Han, Y. J. Won, J. Y. Park, Y. Y. Lee, B. W. Lee, S. L. Kim, and K. S. Lee. 2016. Variation of Cyanidin-3-Glucoside in the Pigmented Rice as Affected by the Rice Cultivation Types. J. Korean Soc. Int. Agric. 28(4): 490-495. https://doi.org/10.12719/KSIA.2016.28.4.490
  4. Chung, I. M., K. H. Kim, J. K. Ahn, and J. C. Chae. 2003. Development of rice production technique with high antioxidative activity and bioactive compounds. Korean Ministry of Agriculture and Forestry, Agricultural R&D research report, 35-80.
  5. Goffman, F. D. and C. J. Bergman. 2004. Rice kernel phenolic content and its relationship with antiradical efficiency. Journal of the Science of Food and Agriculture, 84: 1235–1240. https://doi.org/10.1002/jsfa.1780
  6. Hosseinian, F. S., W. Li, and T. Beta. 2008. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 109: 916-924. https://doi.org/10.1016/j.foodchem.2007.12.083
  7. Kang, S. G., M. S. Hassan, W. G. Sang, M. K. Choi, Y. D. Kim, H. K. Park, A. M. Khalequzzaman, A. Chowdhury, B. K. Kim, and J. H. Lee. 2013. Nitrogen use efficiency of high yielding Japonica rice (Oryza sativa L.) influenced by variable nitrogen applications. Korean J. Crop Sci. 58(3): 213-219. https://doi.org/10.7740/kjcs.2013.58.3.213
  8. Kim, H. Y., J. H. Kim, S. A. Lee, S. N. Ryu, S. J. Han, and S. G. Hong. 2010. Antioxidative and anti-diabetic activity of C3GHi, novel black rice breed. Korean J. Crop. Sci. 55(1): 38-46.
  9. Kim, J. Y., W. D. Seo, D. S. Park, K. C. Jang, K. J. Choi, S. Y. Kim, S. H. Oh, J. E. Ra, G. H. Yi, S. K. Park, U. H. Hwang, Y. C. Song, B. R. Park, M J. Park, H. W. Kang, and S. I. Han. 2013. Comparative Studies on Major Nutritional Components of Black Waxy Rice with Giant Embryos and Its Rice Bran. Food Sci. Biotechnol. 22(S): 1-8.
  10. Kim, S. K., J. H. Shin, D. K. Kang, S. Y. Kim, and S. Y. Park. 2013. Changes of Anthocyanidin content and brown rice yield in three pigmented rice varieties among different transplanting and harvesting times. Korean J. Crop Sci. 58(1): 28-35. https://doi.org/10.7740/kjcs.2013.58.1.028
  11. Lee, I. S., D. R. Lee, S. H. Cho, S. Y. Lee, K. C. Kim, K. W. Lee, and Y. J. Song. 2016. Effects of different nitrogen levels and planting densities on the quality and yield of the black rice cultivar 'Shinnongheugchal'. Korean J. Crop Sci. 61(2): 79-86. https://doi.org/10.7740/kjcs.2016.61.2.079
  12. Nam, S. H., S. P. Choi, M. Y. Kang, H. J. Koh, N. Kozukue, and F. Mendel. 2005. Bran extracts from pigmented rice seeds inhibits tumor promotion in lymphoblastoid B cells by phorbol ester. Food and Chemical Toxicology 43: 741-745. https://doi.org/10.1016/j.fct.2005.01.014
  13. Nam, S. H., S. P. Choi, M. Y. Kang, H. J. Koh, N. Kozukue, and M. Friedman. 2006. Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chem. 94: 613-620. https://doi.org/10.1016/j.foodchem.2004.12.010
  14. Oh S. H., S. H. Kim, Y. J. Moon, and W. G. Choi. 2002. Changes in the levels of $\gamma$-aminobutyric acid and some amino acids by application of glutamic acid solution for the germination of brown rice. Korean J. Biotechnol. Bioeng. 17: 49-53.
  15. Park, D. S., S. K. Park, B. C. Lee, S. Y. Song, N. S. Jun, N. L. Manigbas, J. H. Cho, M. H. Nam, J. S. Jeon, C. D. Han, K. J. Choi, D. H. Kim, Y. M. Woo, H. J. Koh, H. W. Kang, and G. H. Yi. 2009. Molecular characterization and physicochemical analysis of a new giant embryo mutant gene (get) in rice (Oryza sativa L.). Genes Genom. 31: 277-283. https://doi.org/10.1007/BF03191200
  16. Rural Development Administration. 2014. Cultivation techniques for processing and special rice variety. pp. 115-118
  17. Ryu S. N., S. J. Han, S. Z. Park, and H. R. Kim. 2006. Antioxidant activity of blackish purple rice. Korean J. Crop Sci 51: 173- 178.
  18. Seo, W. D., J. Y. Kim, D. S. Park, S. I. Han, K. C. Jang, K. J. Choi, S. Y. Kim, S. H. Oh, J. E. Ra, G. H. Yi, S. K. Park, U. H. Hwang, Y. C. Song, B. R. Park, and H. W. Kang. 2011. Comparative analysis of physicochemicals and antioxidative properties in new giant embryo mutant, 'YR23517Acp79', in rice (Oryza sativa L.). J. Korean Soc. Appl. Biol. Chem. 54: 700-709. https://doi.org/10.1007/BF03253148
  19. Statistics Korea. 2016. http://kosis.kr.
  20. Takayo, S., T. Horino, and Y. Mor. 1994. Accumulation of $\gamma$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech. Biochem. 58: 2291-2292. https://doi.org/10.1271/bbb.58.2291