DOI QR코드

DOI QR Code

저 선량 전산화단층촬영의 관전압과 적응식 통계적 반복 재구성법 적용에 따른 영상평가 및 피폭선량

Image Evaluation and Exposure Dose with the Application of Tube Voltage and Adaptive Statistical Iterative Reconstruction of Low Dose Computed Tomography

  • 문태준 (원광대학교병원 영상의학과) ;
  • 김기정 (건국대학교병원 영상의학과) ;
  • 이혜남 (김상영내과검진센타 영상의학과)
  • Moon, Tae-Joon (Dept. of Radiology, Konkuk University Medical Center) ;
  • Kim, Ki-Jeong (Dept. of Radiology, Wonkwang University Hospital) ;
  • Lee, Hye-Nam (Dept. of Radiology, Gimsangyeong Internal Medicine Clinic)
  • 투고 : 2017.04.23
  • 심사 : 2017.06.10
  • 발행 : 2017.06.30

초록

저 선량 흉부 전산화단층촬영(low dose computed tomography; LDCT)검사 시 기존의 검사방법인 필터보정역투영법인 FBP(filted back projection)와 적응식 통계적 반복 재구성법인 ASIR(adaptive statistical iterative reconstruction)의 적용 및 관전압 변화에 따른 영상의 화질과 피폭선량을 비교 평가해 보고자 하였다. 흉부 phantom을 이용하여 재구성방법에 따라 FBP와 ASIR적용(10%, 20%)을 하였고, 관전압(100kVp, 120kVp)에 변화를 주어 실험을 하였다. 화질평가를 위해 back-ground noise와 signal-noise ratio(SNR), contrast-noise ratio(CNR)를 구하였으며, 선량평가를 위해 CTDIvol과 DLP를 구하였다. 화질평가에 있어 kVp에 따른 ascending aorta(AA) SNR과 inpraspinatus muscle(IM) SNR은 AA SNR과 IM SNR은 유의한 차이가 있었다(p < 0.05). 선량평가에 있어 CTDIvol과 DLP는 유의한 차이가 있었으며(p < 0.05), CTDIvol은 120 kVp, FBP가 2.6 mGy, 120 kVp, 10%-ASIR가 2.38 mGy, 120kVp, 20%-ASIR가 2.17 mGy로 0.43 mGy 감소하였고, 100 kVp, FBP가 1.61 mGy, 100 kVp, 10%-ASIR가 1.48 mGy, 100 kVp, 20%-ASIR가 1.34 mGy로 0.27 mGy 감소하였다. 또한 DLP에서는 120 kVp, FBP가 $103.21mGy{\cdot}cm$, 120 kVp, 10%-ASIR가 $94.57mGy{\cdot}cm$, 120 kVp, 20%-ASIR가 $85.94mGy{\cdot}cm$$17.27mGy{\cdot}cm$(16.7%) 감소하였고, 100 kVp, FBP가 $63.87mGy{\cdot}cm$, 100 kVp, 10%-ASIR가 $58.54mGy{\cdot}cm$, 100 kVp, 20%-ASIR가 $53.25mGy{\cdot}cm$$10.62mGy{\cdot}cm$(16.7%)로 감소하였다. 재구성방법에 따른 FBP와 ASIR 10%, 20%에서는 화질의 변화 없이 선량을 줄일 수 있어 흉부 low dose CT검사 시 ASIR 20%적용하여 검사하는 것이 좋으며, 관전압 변화에 따른 120 kVp와 100 kVp에서는 선량은 크게 줄어들었지만, noise가 증가하여 화질이 떨어지는 것으로 나타났다.

The study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying filter back projection (FBP), the existing test method, and adaptive statistical iterative reconstruction (ASIR) with different values of tube voltage during the low dose computed tomography (LDCT). With the image reconstruction method as basis, chest phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of tube voltage (100 kVp, 120 kVp). For image evaluation, back ground noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were measured, and, for dose assessment, CTDIvol and DLP were measured respectively. In terms of image evaluation, there was significant difference in ascending aorta (AA) SNR and inpraspinatus muscle (IM) SNR with the different amount of tube voltage (p < 0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120 kVp were 2.6 mGy with no-ASIR and 2.17 mGy with 20%-ASIR respectively, decreased by 0.43 mGy, and the values with 100 kVp were 1.61 mGy with no-ASIR and 1.34 mGy with 20%-ASIR, decreased by 0.27 mGy. In terms of DLP, the measured values with 120 kVp were $103.21mGy{\cdot}cm$ with no-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$ (about 16.7%), and the values with 100 kVp were $63.84mGy{\cdot}cm$ with no-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$ (about 16.7%). At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise.

키워드

참고문헌

  1. World Cancer Report 2008, International Agency for Research on Cancer, 2008
  2. Q Li, F Li, K Suzuki, J Shiraishi: Computer-Aided Diagnosis in Thoracic CT, Semin Ultrasound CT MR, 26(5), 357-363, 2005 https://doi.org/10.1053/j.sult.2005.07.001
  3. Lee YJ, Han JY: Current Trends in Early Diagnosis and Treatment of Lung Cancer, Korean Journal of Medicine, 80(5), 529-531, 2011
  4. Lee CH, Goo M, Ye HJ: Radiation dose modulation techniques in the multi detector CT era: from basics to practice, Radio Graphics, 28(2), 1451-1459, 2008
  5. Smith AB, Dillon WP, Lau BC: Radiation dose reduction strategy for CT protocols: successful implementation in neuro radiology section, Radiology, 247(2), 499-506, 2008 https://doi.org/10.1148/radiol.2472071054
  6. Silva AC, Lawder HJ, Hara A: Innovations in CT Dose Reduction Strategy: Application of the Adaptive Statistical Iterative Reconstruction Algorithm, AJR, 194, (1), 191-199, 2010 https://doi.org/10.2214/AJR.09.2953
  7. A. K. Hara, R. G. Paden, and A. C: Silva, Iterative reconstruction technique for reducing body radiation dose at CT, feasibility study, AJR, 193(2,) 764-771, 2009 https://doi.org/10.2214/AJR.09.2397
  8. Heyer CM, Mohr PS, Lemburg SP, et al: Image quality and radiation exposure at pulmonary CT angiography with 100 or 120kVp protocol: Prospective raddomized study, Radiology, vol. 245, 577-583, 2007 https://doi.org/10.1148/radiol.2452061919
  9. Libby DM, Wu N, Lee IJ, Farooqi A, Smith JP, Pasmantier MW, et al. : CT screening for lung cancer: the value of short-term CT follow-up. J. Chest, Vol. 129, 1039-42, 2006 https://doi.org/10.1378/chest.129.4.1039
  10. MacRedmond R, McVey G, Lee M, Costello RW, Kenny D, Foley C, et al.: Screening for lung cancer using low dose CT scanning: results of 2 year follow up, J. Thorax, Vol. 61, 54-56, 2006
  11. Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI: Low-dose CT of the lungs: preliminary observations, Radiology, Vol. 175, 729-731, 1990 https://doi.org/10.1148/radiology.175.3.2343122
  12. Diederich S, Wormanns D, Heindel W: Lung cancer screening with low-dose CT, European Journal of Radiology, Vol. 45, 2-7, 2003 https://doi.org/10.1016/S0720-048X(02)00302-9
  13. Bach PB, Jett JR, Pastorino U, Tockman MS, Swensen SJ, Begg CB: Computed tomography screening and lung cancer outcomes, JAMA., Vol. 297, 953-961, 2007 https://doi.org/10.1001/jama.297.9.953
  14. J Anthony Seibert, Gray T barnes, Robert G Gould: Specification, Acceptance testing and quality control of diagnostic X-ray imaging equipment, Medical physics monograph, 20(1), 899-936, 1991
  15. A. K. Hara, R. G. Paden, and A. C.: Silva, Iterative reconstruction technique for reducing body radiation dose at CT, feasibility study, AJR, 193(2), 764-771, 2009 https://doi.org/10.2214/AJR.09.2397
  16. K. Sauer and C. bouman: A local update strategy for iterative reconstruction from projections, IEEE Trans, on Signal Processing, 41(2), 1993
  17. Hara, AK, Paden, RG, Silva, AC: Iterative Reconstruction Technique for Reducing Body Radiation Dose at CT, feasibility study, AJR, 193(3), 764-771, 2009 https://doi.org/10.2214/AJR.09.2397