DOI QR코드

DOI QR Code

Comparison of Bone Volume Measurements Using Conventional Single and Dual Energy Computed Tomography

전산화단층영상검사에서 단일에너지와 이중에너지를 이용한 뼈 부피측정의 비교

  • 김영균 (삼성서울병원 영상의학과) ;
  • 박상훈 (삼성서울병원 영상의학과) ;
  • 김연민 (원광보건대학교 방사선과)
  • Received : 2017.04.23
  • Accepted : 2017.05.30
  • Published : 2017.06.30

Abstract

The study examines changes in calcium volume on born by comparing two figures; one is measured by dual energy computed tomography(DECT) followed by applying variation in monochromatic energy selection(keV), material decomposition(MD), and material suppressed iodine(MSI) analysis, and the other is measured by conventional single source computed tomography(CSCT). For this study, based on CSCT images taken by using human mimicked phantom, 70, 100, 140 keV and MSI, MD material calcium weighting(MCW) and MD material iodine weighting(MIW) of DECT were applied respectively. Then calculated calcium volume was converted to Agatston score for comparison. Volume of human mimicked phantom was in inverse proportion to keV. The volume decreased while keV increased(p<0.05). The most similar DECT volumes were reconstructed at 70 keV, the difference was showed $35.8{\pm}12.2$ for rib, femur ($16.1{\pm}24.1$), pelvis($13.7{\pm}18.8$), and spine($179.0{\pm}61.8$). However, the volume of MSI was down for each organ; the volume of rib was 5.55%, femur(76.34%), pelvis(55.16%) and spine(87.58%). The volume of MSI decreased 55.9% for rib, femur(80.7%), pelvis(69.6%) and spine(54.2%) while MD MIW reduced for rib(83.51%), femur(87.68%), pelvis(86.64%), and spine(82.62%). With the results, the study found that outcomes were affected by the method which examiners employed. When using DECT, calcium volume of born dropped with keV increased. It also found that the most similar DECT images were reconstructed at 70 keV. The results of experiments implied that the users of MSI and MD should be cautious of errors as there are big differences in scores between those two methods.

이중에너지 전산화단층촬영으로 뼈를 검사하여 다양한 keV와 조영제 물질 억제(material suppression iodine; MSI), 물질구분(material decomposition; MD)기법을 적용하였을 때, 단일에너지 전산화단층촬영과 비교 평가함으로써 칼슘 부피의 변화를 파악하고자 하였다. 인체유사 팬톰을 이용하여 단일에너지 전산화단층촬영의 영상을 기준으로 이중에너지 전산화단층촬영의 각각 70 keV, 100 keV, 140 keV 및 70 keV-MSI와 MD 칼슘강조-물제거(material calcium weighting; MCW)와 MD 요오드강조-물제거(material iodine weighting; MIW)기법을 적용한 후, 칼슘의 부피를 Agatston score 값으로 비교 평가하였다. 인체유사 팬톰의 칼슘 부피는 keV가 증가할수록 감소하였다(p<0.05). 가장 유사한 이중에너지 전산화단층촬영 집단은 70 keV로 그 차이는 각각 갈비뼈 $35.8{\pm}12.2$, 대퇴골 $16.1{\pm}24.1$, 골반 $13.7{\pm}18.8$, 척추 $179.0{\pm}61.8$이었다. 그러나 MSI의 부피는 부위별로 각각 갈비뼈 5.55%, 대퇴골 76.34%, 골반 55.16%, 척추 87.58%가 감소하였고, MD(MCW)는 각각 갈비뼈 55.96%, 대퇴골 80.78%, 골반 69.64%, 척추 54.23%가 줄었으며, MD(MIW)는 각각 갈비뼈 83.51%, 대퇴골 87.68%, 골반 86.64%, 척추 82.62%의 차이로 감소되었다(p<0.05). 이중에너지 전산화단층촬영으로 검사 시, 뼈의 부피는 keV의 증가에 따라서 감소하게 되고 약 70 keV의 에너지 영역에서 CSCT 집단과 유사한 부피로 측정할 수 있다. 그리고 MSI와 MD의 임상기법을 적용한 부피측정은 상당한 오차가 발생하므로 유의하여 사용하여야 한다.

Keywords

References

  1. Barrett JF, Keat N: Artifacts in CT: recognition and avoidance. Radiographics. 24, 1679-1691, 2004 https://doi.org/10.1148/rg.246045065
  2. Avrin DE, Macovski A, Zatz LE: Clinical application of Compton and photo-electric reconstruction in computed tomography: preliminary results. Invest Radiol. 13, 217-222, 1978 https://doi.org/10.1097/00004424-197805000-00007
  3. Lin HH, Peng SL, Wu J, Shih TY, Chuang KS, et al.: A novel two-compartment model for calculating bone volume fractions and bone mineral densities from computed tomography images. IEEE Trans Med Imaging. 2016.
  4. Torikoshi M, Tsunoo T, Sasaki M, Endo M, Noda Y, et al.: Electron density measurement with dual-energy x-ray CT using synchrotron radiation. Phys Med Biol. 48, 673-685, 2003 https://doi.org/10.1088/0031-9155/48/5/308
  5. Wang L, Liu B, Wu XW, Wang J, Zhou Y, et al.: Correlation between CT attenuation value and iodine concentration in vitro: discrepancy between gemstone spectral imaging on single-source dual-en ergy CT and traditional polychromatic X-ray imaging. J Med Imaging Radiat Oncol. 56, 379-383, 2012 https://doi.org/10.1111/j.1754-9485.2012.02379.x
  6. Karcaaltincaba M, Aktas A: Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn Interv Radiol. 17, 181-194, 2011
  7. Johnson TR: Dual-energy CT: general principles. AJR Am J Roentgenol. 199(5 Suppl):S3-8, 2012 https://doi.org/10.2214/AJR.12.9116
  8. Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE: Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 68, 148-154, 2013 https://doi.org/10.1016/j.crad.2012.06.108
  9. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, et al.: Material differentiation by dual energy CT: initial experience. Eur Radiol. 17, 1510-1517, 2007 https://doi.org/10.1007/s00330-006-0517-6
  10. Yamada Y, Jinzaki M, Okamura T, Yamada M, Tanami Y, et al.: Feasibility of coronary artery calcium scoring on virtual unenhanced images derived from single-source fast kVp-switching dual-energy coronary CT angiography. J Cardiovasc Comput Tomog. 8, 391-400, 2014 https://doi.org/10.1016/j.jcct.2014.08.005
  11. Song I, Yi JG, Park JH, Kim SM, Lee KS, et al.: Virtual Non-Contrast CT Using Dual-Energy Spectral CT: Feasibility of Coronary Artery Calcium Scoring. Korean J Radiol. 17, 321-329, 2016 https://doi.org/10.3348/kjr.2016.17.3.321
  12. Cao JX, Wang YM, Kong XQ, Yang C, Wang P: Good interrater reliability of a new grading system in detecting traumatic bone marrow lesions in the knee by dual energy CT virtual non-calcium images. Eur J Radiol. 84, 1109-1115, 2015 https://doi.org/10.1016/j.ejrad.2015.03.003
  13. Biondi M, Vanzi E, De Otto G, Banci Buonamici F, Belmonte GM, et al.: Water/cortical bone decomposition: A new approach in dual energy CT imaging for bone marrow oedema detection. A feasibility study. Phys Med. 32, 1712-1716, 2016 https://doi.org/10.1016/j.ejmp.2016.08.004
  14. Wait JM, Cody D, Jones AK, Rong J, Baladandayuthapani V, et al.: Performance Evaluation of Material Decomposition With Rapid-Kilovoltage -Switching Dual-Energy CT and Implications for Assessing Bone Mineral Density. AJR Am J Roentgenol. 204, 1234-1241, 2015 https://doi.org/10.2214/AJR.14.13093
  15. Thomas C, Schabel C, Krauss B, Weisel K, Bongers M, et al.: Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol. 204, 324-331, 2015 https://doi.org/10.2214/AJR.14.12493
  16. Tran DN, Straka M, Roos JE, Napel S, Fleischmann D: Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol. 16, 160-171, 2009 https://doi.org/10.1016/j.acra.2008.09.004
  17. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, et al.: Virtual monochromatic imaging in dual- source dual-energy CT: radiation dose and image quality. Med Phys. 38, 6371-6379, 2011 https://doi.org/10.1118/1.3658568