DOI QR코드

DOI QR Code

Flavonoid Compounds from the Leaves of Kalanchoe prolifera and Their Cytotoxic Activity against P-388 Murine Leukimia Cells

  • Aisyah, Lilis Siti (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Achmad Yani, University) ;
  • Yun, Yenny Febriani (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Jenderal Achmad Yani, University) ;
  • Herlina, Tati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran) ;
  • Julaeha, Euis (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran) ;
  • Zainuddin, Achmad (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran) ;
  • Nurfarida, Ida (Central Laboratory of Universitas Padjadjaran) ;
  • Hidayat, Ace Tatang (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran) ;
  • Supratman, Unang (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran) ;
  • Shiono, Yoshihito (Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University)
  • 투고 : 2017.02.20
  • 심사 : 2017.05.02
  • 발행 : 2017.06.30

초록

Seven flavonoid compounds, kaempferol (1), quercetin (2), quercetin-3-O-${\beta}$-D-glucopyranoside (3), kaempferol-3-O-${\beta}$-D-glucopyranoside (4), kaempferol-3-O-${\alpha}$-L-rhamnoside (5), quercetin-3-O-sophoroside (6) and quercetin-3-O-rutinoside (7), were isolated from the methanolic extract of leaves of Kalanchoe prolifera. Compounds 1-7 were isolated for first time from this plant. These compounds were evaluated their cytotoxic activity against P-388 murine leukimia cells in vitro. Among those compounds kaempferol (1) and quercetin (2) showed strongest cytotoxic activity with $IC_{50}$ values of $4.45{\pm}0.05$ and $6.28{\pm}0.02{\mu}g/mL$, respectively.

키워드

참고문헌

  1. Heyne, K. The useful Indonesian plants: Research and Development Agency; Ministry of Forestry: Indonesia, 1987, pp 845-846.
  2. Hutapea, J. R. Inventory of Indonesian Medicinal Plants Vol: Research and Development Agency; Ministry of Health: Indonesia, 1994, pp 117-118.
  3. Capon, R. J.; Macleod, J. K.; Oelrichs, P. B. Aust. J. Chem, 1986, 39, 1711-1715.
  4. Yamagishi, T.; Haruna, M.; Yan, X. Z.; Chang, J. J.; Lee, K. H. J. Nat. Prod, 1989, 52, 1071-1079. https://doi.org/10.1021/np50065a025
  5. Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H. Biosci. Biotechnol. Biochem. 2000, 64, 1310-1312. https://doi.org/10.1271/bbb.64.1310
  6. Gaind, K. N.; Singla, A. K.; Boar, R. B.; Copsey, D. B. Phytochemistry 1976, 15, 1999-2000. https://doi.org/10.1016/S0031-9422(00)88875-5
  7. Costa, S. S.; Jossang, A.; Bodo, B. J. Nat. Prod. 1996, 59, 327-329. https://doi.org/10.1021/np960203u
  8. Liu, K. C. S.; Yang, S. L.; Robert, M. F.; Phillipson, J. D. Phytochemistry 1989, 28, 2813-2818. https://doi.org/10.1016/S0031-9422(00)98096-8
  9. Liu, K. C. S.; Yang, S. L.; Robert, M. F.; Phillipson, J. D. J. Nat. Prod. 1989, 52, 970-974. https://doi.org/10.1021/np50065a009
  10. Almeida, A. P.; Da Silva, S. A.; Souza, M. L. M.; Lima, L. M.; Rossi-Bergmann, B.; de Moraes, V. L.; Costa, S. S. Planta Med. 2000, 66, 134-137. https://doi.org/10.1055/s-2000-11131
  11. Wu, P. L.; Hsu, Y. L.; Wu, T. S.; Bastow, K. F.; Lee, K. H. Org. Lett. 2006, 8, 5207-5210. https://doi.org/10.1021/ol061873m
  12. Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H. Phytochemistry 2001, 58, 311-314. https://doi.org/10.1016/S0031-9422(01)00199-6
  13. Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H.; Murakami, A.; Sakai, H.; Koshimizu, K.; Ohigashi, H. Biosci. Biotechnol. Biochem. 2001, 65, 947-949. https://doi.org/10.1271/bbb.65.947
  14. Toker, G.; Memisoglu, M.; Yesilada, E.; Aslan, M. Turk. J. Chem, 2004, 28, 745-749.
  15. Markam, H. M. Techiques of Flavonoid Identification; Academic Press: London, 1982, pp 41-47.
  16. Guvenalp, Z.; Demirezer, L. O. Turk. J. Chem. 2005, 29, 163-169.
  17. Chaturvedula, V. S. P.; Prakash, I. J. Chem. Pharm. Res., 2011, 3, 799-804.
  18. Kim, J. W.; Kim, T. B.; Yang, H.; Sung, S. H. Nat. Prod. Sci. 2016, 22, 117-121. https://doi.org/10.20307/nps.2016.22.2.117
  19. Lin, L. J.; Huang, X. B.; Lv, Z. C. Springerplus, 2016, 5, 1649. https://doi.org/10.1186/s40064-016-3308-9
  20. Aisyah, L. S.; Yun, Y. F.; Julaeha, E.; Herlina, T.; Zainuddin, A.; Hermawan, W.; Supratman, U.; Hayashi, H. Open Chemistry Journal. 2015, 2, 36-39. https://doi.org/10.2174/1874842201502010036
  21. Islam, M.; Al-Amin, Md.; Siddiqi, M. M. A.; Akter, S.; Haque, M. M.; Sultana, N.; Chowdhury, A. M. S. Dhaka Univ. J. Sci. 2012, 60, 11-14.
  22. Si, C. L.; Du, Z. G.; Fan, S.; An, L. L. Chem. Nat. Comp. 2016, 52, 794-797. https://doi.org/10.1007/s10600-016-1780-7
  23. Furusawa, M.; Tanaka, T.; Ito, T.; Nakaya, K.; Iliya, I.; Ohyama, M.; Iinuma, M.; Murata, H.; Inatomi, Y.; Inada, A.; Nakanishi, T.; Matsushita, S.; Kubota, Y.; Sawa, R.; Takahashi, Y. Chem. Pharm. Bull. 2005, 53, 591-593. https://doi.org/10.1248/cpb.53.591
  24. Ross, S. A.; ElSohly, M. A.; Sultana, G. N.; Mehmedic, Z.; Hossain, C. F.; Chandra, S. Pyhtochem. Anal. 2005, 16, 45-48. https://doi.org/10.1002/pca.809
  25. Li, H.; Liu, Y.; Yi, Y.; Miao, Q.; Liu, S.; Zhao, F.; Cong, W.; Wang, C.; Xia, C. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1048, 56-63. https://doi.org/10.1016/j.jchromb.2017.01.041
  26. Zhang, S.; Tao, Z. M.; Zhang, Y.; Shen, Z. W.; Qin, G. W. Chin. J. Nat. Med. 2010, 8, 21-24. https://doi.org/10.3724/SP.J.1009.2010.00021
  27. Ganbaatar, C.; Gruner, M.; Mishig, D.; Duger, R.; Schmidt, A. W.; Knolker, H. J. The Open Natural Products Journal 2015, 8, 1-7. https://doi.org/10.2174/1874848101508010001
  28. Alley, M. C.; Scudiero, D. A.; Monks, A.; Hursey, M. L.; Czerwinski, M. J.; Fine, D. L.; Abbott, B. J.; Mayo, J. G.; Shoemaker, R. H.; Boyd, M. R. Cancer Res. 1988, 48, 589-601.
  29. Hakim, E. H.; Juliawaty, L. D.; Syah, Y. M.; Din, L. B.; Ghisalberti, E. L.; Latip, J.; Said, I. M.; Achmad, S. A. Z. Naturforsch. C 2005, 60, 723-727.
  30. Harneti, D.; Tjokronegoro, R.; Safari, A.; Supratman, U.; Loong, X. M.; Mukhtar, M. R.; Mohamad, K.; Awang, K.; Hayashi, H. Phytochem. Lett. 2012, 5, 496-499. https://doi.org/10.1016/j.phytol.2012.04.013
  31. Hakim, E. H.; Achmad, S. A.; Juliawaty, L. D.; Makmur, L.; Syah, Y. M.; Aimi, N.; Kitajima, M.; Takayama, H.; Ghisalberti, E. L. J. Nat. Med. 2007, 61, 229-236. https://doi.org/10.1007/s11418-006-0106-7

피인용 문헌

  1. HPLC-DAD-ESI-MS/MS screening of phytochemical compounds and the bioactive properties of different plant parts of Zizyphus lotus (L.) Desf. vol.10, pp.9, 2017, https://doi.org/10.1039/c9fo01423c
  2. Pharmacological activity and quantitative analysis of flavonoids isolated from the flowers of Begonia semperflorens Link et Otto vol.62, pp.1, 2017, https://doi.org/10.1186/s13765-019-0416-6
  3. Natural products isolated from Casimiroa vol.18, pp.1, 2017, https://doi.org/10.1515/chem-2020-0128
  4. Natural products isolated from Casimiroa vol.18, pp.1, 2017, https://doi.org/10.1515/chem-2020-0128
  5. Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii vol.25, pp.7, 2017, https://doi.org/10.3390/molecules25071730
  6. Chemical Constituents of the Leaves of Campanula takesimana (Korean Bellflower) and Their Inhibitory Effects on LPS-induced PGE 2 Production vol.9, pp.9, 2017, https://doi.org/10.3390/plants9091232
  7. Chemical Characterization and Anti-HIV-1 Activity Assessment of Iridoids and Flavonols from Scrophularia trifoliata vol.26, pp.16, 2017, https://doi.org/10.3390/molecules26164777
  8. Microbial Transformation of Galangin Derivatives and Cytotoxicity Evaluation of Their Metabolites vol.11, pp.9, 2017, https://doi.org/10.3390/catal11091020
  9. A new havanensin-type limonoid from Chisocheton macrophyllus vol.64, pp.1, 2017, https://doi.org/10.1186/s13765-021-00606-5