DOI QR코드

DOI QR Code

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana (Doctoral Program in Applied Sciences - Coastal Marine Systems, Faculty of Marine Sciences and Biological Resources, University of Antofagasta) ;
  • Florez, July (Microalgae Biotechnology Research Group, Faculty of Basic Sciences, University of Atlantico) ;
  • Angulo, Edgardo (Microalgae Biotechnology Research Group, Faculty of Basic Sciences, University of Atlantico) ;
  • Varela-Prieto, Lourdes (Immunology and Molecular Biology Research Group, University of Atlantico) ;
  • Infante, Cherlys (Faculty of Pharmaceutical Sciences, Campus of Zaragocilla, University of Cartagena) ;
  • Barrios, Fredy (Faculty of Pharmaceutical Sciences, Campus of Zaragocilla, University of Cartagena) ;
  • Barraza, Beatriz (Faculty of Health Sciences, CIUL, Universuty Libre) ;
  • Gallardo, D.I (Department of Mathematics, Faculty of Engineering, University of Atacama) ;
  • Valdes, Jorge (Doctoral Program in Applied Sciences - Coastal Marine Systems, Faculty of Marine Sciences and Biological Resources, University of Antofagasta)
  • Received : 2016.11.21
  • Accepted : 2017.03.16
  • Published : 2017.06.28

Abstract

The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.

Keywords

References

  1. Shin W, Na K, Kim Y. 2015. Adsorption of metal ions from aqueous solution by recycled aggregate: estimation of pretreatment effect. Desalination Water Treat. 57: 9366-9374.
  2. Mehta J, Bhardwaj SK, Bhardwaj N, Paul AK, Kumar P, Kim KH, Deep A. 2016. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol. Adv. 34: 47-60. https://doi.org/10.1016/j.biotechadv.2015.12.001
  3. He J, Chen JP. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 160: 67-78. https://doi.org/10.1016/j.biortech.2014.01.068
  4. Veglio F, Beolchini F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44: 301-316. https://doi.org/10.1016/S0304-386X(96)00059-X
  5. Maznah WW, Al-Fawwaz AT, Surif M. 2012. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metals biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J. Environ. Sci. 24: 1386-1393. https://doi.org/10.1016/S1001-0742(11)60931-5
  6. Kondo K, Hirayama K, Matsumoto M. 2013. Adsorption of metal ions from aqueous solution onto microalga entrapped into Ca-alginate gel bead. Desalination Water Treat. 51: 4675- 4683. https://doi.org/10.1080/19443994.2013.770236
  7. Zhang X, Zhao X, Wan C, Chen B, Bai F. 2016. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res. 16: 427-433. https://doi.org/10.1016/j.algal.2016.04.002
  8. Xu J, Song X, Zhang Q, Pan H, Liang Y. 2011. Characterization of metal removal of immobilized Bacillus strain CR-7 biomass from aqueous solutions. J. Hazard. Mater. 187: 450-458. https://doi.org/10.1016/j.jhazmat.2011.01.047
  9. Aksu Z, Donmez G. 2006. Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: co-ion effect on mono-component isotherm parameters. Process Biochem. 41: 860-868. https://doi.org/10.1016/j.procbio.2005.10.025
  10. Mehta SK, Gaur JP. 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113-152. https://doi.org/10.1080/07388550500248571
  11. Tuzen M, Sari A. 2010. Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem. Eng. J. 158: 200-206. https://doi.org/10.1016/j.cej.2009.12.041
  12. Anastopoulos I, Kyzas GZ. 2015. Progress in batch biosorption of heavy metals onto algae. J. Mol. Liquids 209: 77-86. https://doi.org/10.1016/j.molliq.2015.05.023
  13. Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A. 2002. Sorption of mercury, cadmium and lead by microalgae. ScienceAsia 28: 253-261. https://doi.org/10.2306/scienceasia1513-1874.2002.28.253
  14. Brinza L, Dring MJ, Gavrilescu M. 2007. Marine micro and macro algal species as biosorbents for heavy metals. Environ. Eng. Manag. J. 6: 237-251.
  15. Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH. 2015. Microalgae - a promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113: 329-352. https://doi.org/10.1016/j.ecoenv.2014.12.019
  16. de-Bashan LE, Moreno M, Hernandez JP, Bashan Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae. Water Res. 36: 2941- 2948. https://doi.org/10.1016/S0043-1354(01)00522-X
  17. Akhtar N, Iqbal M, Zafar S, Iqbal J. 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20: 231-239. https://doi.org/10.1016/S1001-0742(08)60036-4
  18. Infante C, Leun I, Florez JZ, Zarate AM, Barrios F, Zapata C. 2013. Removal of ammonium and phosphate ions from wastewater samples by immobilized Chlorella sp. Int. J. Environ. Stud. 70: 1-7. https://doi.org/10.1080/00207233.2012.742643
  19. Ting H, Haifeng L, Shanshan M, Zhang Y. 2017. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int. J. Agric. Biol. Eng. 10: 1-29.
  20. Doshi H, Ray A, Kothari IL. 2008. Bioremediation potential of Chlorella: spectroscopic, kinetics, and SEM studies. Int. J. Phytoremediation 10: 264-277. https://doi.org/10.1080/15226510802096028
  21. Akhtar N, Iqbal J, Iqbal M. 2004. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108: 85-94. https://doi.org/10.1016/j.jhazmat.2004.01.002
  22. de-Bashan LE, Bashan Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour. Technol. 101: 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043
  23. Katircioglu H, Aslim B, Turker AR, Atici T, Beyatli Y. 2008. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Bioresour. Technol. 99: 4185-4191. https://doi.org/10.1016/j.biortech.2007.08.068
  24. Mallick N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15: 377-390. https://doi.org/10.1023/A:1020238520948
  25. Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR. 2004. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30: 57-63. https://doi.org/10.1016/S0160-4120(03)00146-6
  26. Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR. 1996. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour. Technol. 55: 181-186. https://doi.org/10.1016/0960-8524(95)00196-4
  27. Travieso L, Canizares RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V. 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62: 144-151. https://doi.org/10.1007/s001289900853
  28. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. https://doi.org/10.1016/j.biotechadv.2015.12.003
  29. Pellon A, Frades J, Chacon A, Perez E, Ona A, Espinosa MC, et al. 2005. Eliminacion de cromo y cadmio mediante Scenedesmus obliquus en estado inmovilizado. Rev. CENIC Cienc. Quim. 36: 175-180.
  30. Marcelino PRF, Milani KML, Mali S, dos Santos OJAP, de Oliveira ALM. 2016. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growthpromoting bacteria in agricultural systems. Appl. Microbiol. Biotechnol. 100: 7323-7338. https://doi.org/10.1007/s00253-016-7566-9
  31. Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martinez-Aguilar L. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73: 5308-5319. https://doi.org/10.1128/AEM.00324-07
  32. Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero- Mellado J, Perez-Rueda E. 2013. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4: 236-243. https://doi.org/10.4161/bioe.23808
  33. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V. 2012. Common features of environmental and potentially beneficial plantassociated Burkholderia. Microb. Ecol. 63: 249-266. https://doi.org/10.1007/s00248-011-9929-1
  34. Bashan Y, Holguin G. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577. https://doi.org/10.1139/w04-035
  35. Bashan Y, Hernandez JP, Leyva LA, Bacilio M. 2002. Alginate microbeads as inoculant carriers for plant growthpromoting bacteria. Biol. Fertil. Soils 35: 359-368. https://doi.org/10.1007/s00374-002-0481-5
  36. Subashchandrabose S, Ramakrishnan B. 2011. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv. 29: 896-907. https://doi.org/10.1016/j.biotechadv.2011.07.009
  37. Franco AJ, Leon-Luna I. 2010. Geochemistry and heavy metals concentrations in a comercial importance organism (Corbula caribaea. D'orbigny, 1842) in shallow subtidal zone at the Mallorquin-Atlantico Coastal lagoon. Bol. Cient. CIOH 28: 69-83.
  38. Mangones A, Leon-Luna I. 2014. Elementos nutritivos la clorofila a y su relacion con las variables fisico quimicas en la Cienaga de Mallorquin, Colombia. Bol. Inst. Oceanograf. Venez. 53: 127-141.
  39. Baron E, Gago-Ferrero P, Gorga M, Rudolph I, Mendoza G, Zapata AM, et al. 2013. Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America. Chemosphere 92: 309-316. https://doi.org/10.1016/j.chemosphere.2013.03.032
  40. Sanchez E, Gonzalez M, Cantu V. 2008. Estudio cinetico e isotermas de adsorcion de Ni (II) y Zn (II) utilizando biomasa del alga Chlorella sp. inmovilizada. Cien. UANL 11: 168-176.
  41. Roesch LFW, Olivares FL, Pereira Passaglia LM, Selbach PA, de Sa ELS, de Camargo FAO. 2006. Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J. Microbiol. Biotechnol. 22: 967-974. https://doi.org/10.1007/s11274-006-9142-4
  42. Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, et al. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Evol. Microbiol. 54: 2155-2162. https://doi.org/10.1099/ijs.0.02879-0
  43. Arcos M, Diaz TF. 2004. Crioperservación de aislados nativos de la bacteria ruminal Fibrobacter succinogenes. Corpoica Cien. Tecnol. Agropecuaria (Colombia) 5: 60-63. https://doi.org/10.21930/rcta.vol5_num1_art:26
  44. Fernandes Junior PI, Duarte Pereira GM, Perin L, Mesquita da Silva L, Cardoso Barauna A, Muniz Alves F, et al. 2013. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon. Int. J. Trop. Biol. 61: 991-999.
  45. Mathialagan T, Viraraghavan T. 2003. Adsorption of cadmium from aqueous solutions by vermiculite. Sep. Sci. Technol. 38: 57-76. https://doi.org/10.1081/SS-120016698
  46. Gokhale S, Jyoti K, Lele S. 2008. Kinetic and equilibrium modeling of chromium(VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99: 3600-3608. https://doi.org/10.1016/j.biortech.2007.07.039
  47. Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361-1403. https://doi.org/10.1021/ja02242a004
  48. Freundlich H, Hatfield H. 1926. Colloid and Capillary Chemistry. Mathuen and Co. Ltd, London, UK.
  49. Ferrari SLP, Cribari-Neto F. 2004. Beta regression for modelling rates and proportions. J. Appl. Stat. 31: 799-815. https://doi.org/10.1080/0266476042000214501
  50. Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J. Stat. Softw. 34: 1-24.
  51. WHO. 2008. Guidelines for drinking water quality. World Health Organization, Geneva. Switzerland.
  52. EPA. 2002. Environmental Protection Agency safe drinking water facts sheets. Islamabad, Pakistan.
  53. Maxwell D, Falk S, Trick C, Huner N. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105: 535-543. https://doi.org/10.1104/pp.105.2.535
  54. Shanab S, Essa A, Shalaby E. 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal. Behav. 7: 392-399. https://doi.org/10.4161/psb.19173
  55. Yamaguchi T, Ishida M, Suzuki T. 1999. An immobilized cell system in polyurethane foam for the lipophilic microalga Prototheca zopfii. Process Biochem. 34: 167-171. https://doi.org/10.1016/S0032-9592(98)00084-3
  56. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. 1994. Biofilms, the customized microniche. J. Bacteriol. 176: 2137-2142. https://doi.org/10.1128/jb.176.8.2137-2142.1994
  57. Urrutia I, Serra J, Llama M. 19995. Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb. Technol. 17: 200-205. https://doi.org/10.1016/0141-0229(94)00008-F
  58. Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578-585. https://doi.org/10.1016/j.biortech.2014.10.159
  59. de-Bashan LE, Antoun H, Bashan Y. 2005. Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol. 54: 197-203. https://doi.org/10.1016/j.femsec.2005.03.014
  60. de-Bashan LE, Bashan Y. 2008. Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Environ. Microbiol. 74: 6797-6802. https://doi.org/10.1128/AEM.00518-08
  61. Kondo K, Hirayama K, Matsumoto M. 2013. Adsorption of metal ions from aqueous solution onto microalga entrapped into Ca-alginate gel bead. Desalination Water Treat. 51: 4675- 4683. https://doi.org/10.1080/19443994.2013.770236
  62. Vinod VTP, Sashidhar RB, Sivaprasad N, Sarma VUM, Satyanarayana N, Kumaresan R, et al. 2011. Bioremediation of mercury(II) from aqueous solution by gum karaya (Sterculia urens): a natural hydrocolloid. Desalination 272: 270-277. https://doi.org/10.1016/j.desal.2011.01.027
  63. Sheng PX, Ting YP, Chen JP, Hong L. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275: 131-141. https://doi.org/10.1016/j.jcis.2004.01.036
  64. Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY. 2006. Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int. J. Miner. Process. 81: 35-43. https://doi.org/10.1016/j.minpro.2006.06.002
  65. De Schamphelaere K, Vasconcelos FM, Heijerick DG, Tack FMG, Delbeke K, Allen HE, Janssen CR. 2003. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 22: 2454-2465. https://doi.org/10.1897/02-499
  66. Chen CY, Chang HW, Kao PC, Pan JL, Chang JS. 2012. Biosorption of cadmium by $CO_2$-fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 105: 74-80. https://doi.org/10.1016/j.biortech.2011.11.124
  67. Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattiasson B. 2006. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63: 903-911. https://doi.org/10.1016/j.chemosphere.2005.09.062
  68. Saglam N, Say R, Denizli A, Patir S, Arica MY. 1999. Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem. 34: 725-730. https://doi.org/10.1016/S0032-9592(98)00148-4
  69. Seok S, Shin S, Lee TJ, Jeong JM, Yang M, Kim DH, et al. 2015. Multifunctional polyurethane sponge for polymerase chain reaction enhancement. ACS Appl. Mater. Interfaces 7: 4699-4705. https://doi.org/10.1021/am508101m
  70. Abbas M, Nadeem R, Zafar MN, Arshad M. 2008. Biosorption of chromium(III) and chromium(VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water Air Soil Pollut. 191: 139-148. https://doi.org/10.1007/s11270-007-9613-8

Cited by

  1. Sorghum Growth Promotion by Paraburkholderia tropica and Herbaspirillum frisingense : Putative Mechanisms Revealed by Genomics and Metagenomics vol.8, pp.5, 2017, https://doi.org/10.3390/microorganisms8050725
  2. Microalga Growth-Promoting Bacteria (MGPB): A formal term proposed for beneficial bacteria involved in microalgal–bacterial interactions vol.61, pp.None, 2022, https://doi.org/10.1016/j.algal.2021.102585