References
- Shin W, Na K, Kim Y. 2015. Adsorption of metal ions from aqueous solution by recycled aggregate: estimation of pretreatment effect. Desalination Water Treat. 57: 9366-9374.
- Mehta J, Bhardwaj SK, Bhardwaj N, Paul AK, Kumar P, Kim KH, Deep A. 2016. Progress in the biosensing techniques for trace-level heavy metals. Biotechnol. Adv. 34: 47-60. https://doi.org/10.1016/j.biotechadv.2015.12.001
- He J, Chen JP. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour. Technol. 160: 67-78. https://doi.org/10.1016/j.biortech.2014.01.068
- Veglio F, Beolchini F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44: 301-316. https://doi.org/10.1016/S0304-386X(96)00059-X
- Maznah WW, Al-Fawwaz AT, Surif M. 2012. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metals biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J. Environ. Sci. 24: 1386-1393. https://doi.org/10.1016/S1001-0742(11)60931-5
- Kondo K, Hirayama K, Matsumoto M. 2013. Adsorption of metal ions from aqueous solution onto microalga entrapped into Ca-alginate gel bead. Desalination Water Treat. 51: 4675- 4683. https://doi.org/10.1080/19443994.2013.770236
- Zhang X, Zhao X, Wan C, Chen B, Bai F. 2016. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res. 16: 427-433. https://doi.org/10.1016/j.algal.2016.04.002
- Xu J, Song X, Zhang Q, Pan H, Liang Y. 2011. Characterization of metal removal of immobilized Bacillus strain CR-7 biomass from aqueous solutions. J. Hazard. Mater. 187: 450-458. https://doi.org/10.1016/j.jhazmat.2011.01.047
- Aksu Z, Donmez G. 2006. Binary biosorption of cadmium (II) and nickel (II) onto dried Chlorella vulgaris: co-ion effect on mono-component isotherm parameters. Process Biochem. 41: 860-868. https://doi.org/10.1016/j.procbio.2005.10.025
- Mehta SK, Gaur JP. 2005. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 25: 113-152. https://doi.org/10.1080/07388550500248571
- Tuzen M, Sari A. 2010. Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem. Eng. J. 158: 200-206. https://doi.org/10.1016/j.cej.2009.12.041
- Anastopoulos I, Kyzas GZ. 2015. Progress in batch biosorption of heavy metals onto algae. J. Mol. Liquids 209: 77-86. https://doi.org/10.1016/j.molliq.2015.05.023
- Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A. 2002. Sorption of mercury, cadmium and lead by microalgae. ScienceAsia 28: 253-261. https://doi.org/10.2306/scienceasia1513-1874.2002.28.253
- Brinza L, Dring MJ, Gavrilescu M. 2007. Marine micro and macro algal species as biosorbents for heavy metals. Environ. Eng. Manag. J. 6: 237-251.
- Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH. 2015. Microalgae - a promising tool for heavy metal remediation. Ecotoxicol. Environ. Saf. 113: 329-352. https://doi.org/10.1016/j.ecoenv.2014.12.019
- de-Bashan LE, Moreno M, Hernandez JP, Bashan Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae. Water Res. 36: 2941- 2948. https://doi.org/10.1016/S0043-1354(01)00522-X
- Akhtar N, Iqbal M, Zafar S, Iqbal J. 2008. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J. Environ. Sci. 20: 231-239. https://doi.org/10.1016/S1001-0742(08)60036-4
- Infante C, Leun I, Florez JZ, Zarate AM, Barrios F, Zapata C. 2013. Removal of ammonium and phosphate ions from wastewater samples by immobilized Chlorella sp. Int. J. Environ. Stud. 70: 1-7. https://doi.org/10.1080/00207233.2012.742643
- Ting H, Haifeng L, Shanshan M, Zhang Y. 2017. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int. J. Agric. Biol. Eng. 10: 1-29.
- Doshi H, Ray A, Kothari IL. 2008. Bioremediation potential of Chlorella: spectroscopic, kinetics, and SEM studies. Int. J. Phytoremediation 10: 264-277. https://doi.org/10.1080/15226510802096028
- Akhtar N, Iqbal J, Iqbal M. 2004. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J. Hazard. Mater. 108: 85-94. https://doi.org/10.1016/j.jhazmat.2004.01.002
- de-Bashan LE, Bashan Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour. Technol. 101: 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043
- Katircioglu H, Aslim B, Turker AR, Atici T, Beyatli Y. 2008. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Bioresour. Technol. 99: 4185-4191. https://doi.org/10.1016/j.biortech.2007.08.068
- Mallick N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15: 377-390. https://doi.org/10.1023/A:1020238520948
- Rangsayatorn N, Pokethitiyook P, Upatham ES, Lanza GR. 2004. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environ. Int. 30: 57-63. https://doi.org/10.1016/S0160-4120(03)00146-6
- Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR. 1996. Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour. Technol. 55: 181-186. https://doi.org/10.1016/0960-8524(95)00196-4
- Travieso L, Canizares RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V. 1999. Heavy metal removal by microalgae. Bull. Environ. Contam. Toxicol. 62: 144-151. https://doi.org/10.1007/s001289900853
- Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. https://doi.org/10.1016/j.biotechadv.2015.12.003
- Pellon A, Frades J, Chacon A, Perez E, Ona A, Espinosa MC, et al. 2005. Eliminacion de cromo y cadmio mediante Scenedesmus obliquus en estado inmovilizado. Rev. CENIC Cienc. Quim. 36: 175-180.
- Marcelino PRF, Milani KML, Mali S, dos Santos OJAP, de Oliveira ALM. 2016. Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growthpromoting bacteria in agricultural systems. Appl. Microbiol. Biotechnol. 100: 7323-7338. https://doi.org/10.1007/s00253-016-7566-9
- Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martinez-Aguilar L. 2007. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73: 5308-5319. https://doi.org/10.1128/AEM.00324-07
- Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero- Mellado J, Perez-Rueda E. 2013. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4: 236-243. https://doi.org/10.4161/bioe.23808
- Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonca-Previato L, James EK, Venturi V. 2012. Common features of environmental and potentially beneficial plantassociated Burkholderia. Microb. Ecol. 63: 249-266. https://doi.org/10.1007/s00248-011-9929-1
- Bashan Y, Holguin G. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577. https://doi.org/10.1139/w04-035
- Bashan Y, Hernandez JP, Leyva LA, Bacilio M. 2002. Alginate microbeads as inoculant carriers for plant growthpromoting bacteria. Biol. Fertil. Soils 35: 359-368. https://doi.org/10.1007/s00374-002-0481-5
- Subashchandrabose S, Ramakrishnan B. 2011. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol. Adv. 29: 896-907. https://doi.org/10.1016/j.biotechadv.2011.07.009
- Franco AJ, Leon-Luna I. 2010. Geochemistry and heavy metals concentrations in a comercial importance organism (Corbula caribaea. D'orbigny, 1842) in shallow subtidal zone at the Mallorquin-Atlantico Coastal lagoon. Bol. Cient. CIOH 28: 69-83.
- Mangones A, Leon-Luna I. 2014. Elementos nutritivos la clorofila a y su relacion con las variables fisico quimicas en la Cienaga de Mallorquin, Colombia. Bol. Inst. Oceanograf. Venez. 53: 127-141.
- Baron E, Gago-Ferrero P, Gorga M, Rudolph I, Mendoza G, Zapata AM, et al. 2013. Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America. Chemosphere 92: 309-316. https://doi.org/10.1016/j.chemosphere.2013.03.032
- Sanchez E, Gonzalez M, Cantu V. 2008. Estudio cinetico e isotermas de adsorcion de Ni (II) y Zn (II) utilizando biomasa del alga Chlorella sp. inmovilizada. Cien. UANL 11: 168-176.
- Roesch LFW, Olivares FL, Pereira Passaglia LM, Selbach PA, de Sa ELS, de Camargo FAO. 2006. Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J. Microbiol. Biotechnol. 22: 967-974. https://doi.org/10.1007/s11274-006-9142-4
- Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, et al. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Evol. Microbiol. 54: 2155-2162. https://doi.org/10.1099/ijs.0.02879-0
- Arcos M, Diaz TF. 2004. Crioperservación de aislados nativos de la bacteria ruminal Fibrobacter succinogenes. Corpoica Cien. Tecnol. Agropecuaria (Colombia) 5: 60-63. https://doi.org/10.21930/rcta.vol5_num1_art:26
- Fernandes Junior PI, Duarte Pereira GM, Perin L, Mesquita da Silva L, Cardoso Barauna A, Muniz Alves F, et al. 2013. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon. Int. J. Trop. Biol. 61: 991-999.
- Mathialagan T, Viraraghavan T. 2003. Adsorption of cadmium from aqueous solutions by vermiculite. Sep. Sci. Technol. 38: 57-76. https://doi.org/10.1081/SS-120016698
- Gokhale S, Jyoti K, Lele S. 2008. Kinetic and equilibrium modeling of chromium(VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour. Technol. 99: 3600-3608. https://doi.org/10.1016/j.biortech.2007.07.039
- Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40: 1361-1403. https://doi.org/10.1021/ja02242a004
- Freundlich H, Hatfield H. 1926. Colloid and Capillary Chemistry. Mathuen and Co. Ltd, London, UK.
- Ferrari SLP, Cribari-Neto F. 2004. Beta regression for modelling rates and proportions. J. Appl. Stat. 31: 799-815. https://doi.org/10.1080/0266476042000214501
- Cribari-Neto F, Zeileis A. 2010. Beta regression in R. J. Stat. Softw. 34: 1-24.
- WHO. 2008. Guidelines for drinking water quality. World Health Organization, Geneva. Switzerland.
- EPA. 2002. Environmental Protection Agency safe drinking water facts sheets. Islamabad, Pakistan.
- Maxwell D, Falk S, Trick C, Huner N. 1994. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105: 535-543. https://doi.org/10.1104/pp.105.2.535
- Shanab S, Essa A, Shalaby E. 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal. Behav. 7: 392-399. https://doi.org/10.4161/psb.19173
- Yamaguchi T, Ishida M, Suzuki T. 1999. An immobilized cell system in polyurethane foam for the lipophilic microalga Prototheca zopfii. Process Biochem. 34: 167-171. https://doi.org/10.1016/S0032-9592(98)00084-3
- Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. 1994. Biofilms, the customized microniche. J. Bacteriol. 176: 2137-2142. https://doi.org/10.1128/jb.176.8.2137-2142.1994
- Urrutia I, Serra J, Llama M. 19995. Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzyme Microb. Technol. 17: 200-205. https://doi.org/10.1016/0141-0229(94)00008-F
- Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS. 2015. Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578-585. https://doi.org/10.1016/j.biortech.2014.10.159
- de-Bashan LE, Antoun H, Bashan Y. 2005. Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol. 54: 197-203. https://doi.org/10.1016/j.femsec.2005.03.014
- de-Bashan LE, Bashan Y. 2008. Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl. Environ. Microbiol. 74: 6797-6802. https://doi.org/10.1128/AEM.00518-08
- Kondo K, Hirayama K, Matsumoto M. 2013. Adsorption of metal ions from aqueous solution onto microalga entrapped into Ca-alginate gel bead. Desalination Water Treat. 51: 4675- 4683. https://doi.org/10.1080/19443994.2013.770236
- Vinod VTP, Sashidhar RB, Sivaprasad N, Sarma VUM, Satyanarayana N, Kumaresan R, et al. 2011. Bioremediation of mercury(II) from aqueous solution by gum karaya (Sterculia urens): a natural hydrocolloid. Desalination 272: 270-277. https://doi.org/10.1016/j.desal.2011.01.027
- Sheng PX, Ting YP, Chen JP, Hong L. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 275: 131-141. https://doi.org/10.1016/j.jcis.2004.01.036
- Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY. 2006. Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int. J. Miner. Process. 81: 35-43. https://doi.org/10.1016/j.minpro.2006.06.002
- De Schamphelaere K, Vasconcelos FM, Heijerick DG, Tack FMG, Delbeke K, Allen HE, Janssen CR. 2003. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 22: 2454-2465. https://doi.org/10.1897/02-499
-
Chen CY, Chang HW, Kao PC, Pan JL, Chang JS. 2012. Biosorption of cadmium by
$CO_2$ -fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 105: 74-80. https://doi.org/10.1016/j.biortech.2011.11.124 - Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattiasson B. 2006. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63: 903-911. https://doi.org/10.1016/j.chemosphere.2005.09.062
- Saglam N, Say R, Denizli A, Patir S, Arica MY. 1999. Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem. 34: 725-730. https://doi.org/10.1016/S0032-9592(98)00148-4
- Seok S, Shin S, Lee TJ, Jeong JM, Yang M, Kim DH, et al. 2015. Multifunctional polyurethane sponge for polymerase chain reaction enhancement. ACS Appl. Mater. Interfaces 7: 4699-4705. https://doi.org/10.1021/am508101m
- Abbas M, Nadeem R, Zafar MN, Arshad M. 2008. Biosorption of chromium(III) and chromium(VI) by untreated and pretreated Cassia fistula biomass from aqueous solutions. Water Air Soil Pollut. 191: 139-148. https://doi.org/10.1007/s11270-007-9613-8
Cited by
- Sorghum Growth Promotion by Paraburkholderia tropica and Herbaspirillum frisingense : Putative Mechanisms Revealed by Genomics and Metagenomics vol.8, pp.5, 2017, https://doi.org/10.3390/microorganisms8050725
- Microalga Growth-Promoting Bacteria (MGPB): A formal term proposed for beneficial bacteria involved in microalgal–bacterial interactions vol.61, pp.None, 2022, https://doi.org/10.1016/j.algal.2021.102585