DOI QR코드

DOI QR Code

MALDI-TOF Mass Spectrometry as a Useful Tool for Identification of Enterococcus spp. from Wild Birds and Differentiation of Closely Related Species

  • Stepien-Pysniak, Dagmara (Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin) ;
  • Hauschild, Tomasz (Department of Microbiology, Institute of Biology, University of Bialystok) ;
  • Rozanski, Pawel (Department of Biology and Environmental Hygiene, Faculty of Biology and Animal Breeding, University of Life Sciences in Lublin) ;
  • Marek, Agnieszka (Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin)
  • Received : 2016.12.22
  • Accepted : 2017.03.10
  • Published : 2017.06.28

Abstract

The aim of this study was to explore the accuracy and feasibility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying bacteria from environmental sources, as compared with rpoA gene sequencing, and to evaluate the occurrence of bacteria of the genus Enterococcus in wild birds. In addition, a phyloproteomic analysis of certain Enterococcus species with spectral relationships was performed. The enterococci were isolated from 25 species of wild birds in central Europe (Poland). Proteomic (MALDI-TOF MS) and genomic (rpoA gene sequencing) methods were used to identify all the isolates. Using MALDI-TOF MS, all 54 (100%) isolates were identified as Enterococcus spp. Among these, 51 (94.4%) isolates were identified to the species level (log(score) ${\geq}2.0$), and three isolates (5.6%) were identified at a level of probable genus identification (log(score) 1.88-1.927). Phylogenetic analysis based on rpoA sequences confirmed that all enterococci had been correctly identified. Enterococcus faecalis was the most prevalent enterococcal species (50%) and Enterococcus faecium (33.3%) the second most frequent species, followed by Enterococcus hirae (9.3%), Enterococcus durans (3.7%), and Enterococcus casseliflavus (3.7%). The phyloproteomic analysis of the spectral profiles of the isolates showed that MALDI-TOF MS is able to differentiate among similar species of the genus Enterococcus.

Keywords

References

  1. Dolka B, Chrobak-Chmiel D, Makrai L, Szeleszczuk P. 2016. Phenotypic and genotypic characterization of Enterococcus cecorum strains associated with infections in poultry. BMC Vet. Res. 12: 129. https://doi.org/10.1186/s12917-016-0761-1
  2. Werner G, Fleige C, Fessler AT, Timke M, Kostrzewa M, Zischka M, et al. 2012. Improved identification including MALDI-TOF mass spectrometry analysis of group D streptococci from bovine mastitis and subsequent molecular characterization of corresponding Enterococcus faecalis and Enterococcus faecium isolates. Vet. Microbiol. 160: 162-169. https://doi.org/10.1016/j.vetmic.2012.05.019
  3. Marrow J, Whittington JK, Mitchell M, Hoyer LL, Maddox C. 2009. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. isolated from free-living and captive raptors in Central Illinois. J. Wildl. Dis. 45: 302-313. https://doi.org/10.7589/0090-3558-45.2.302
  4. Radhouani H, Poeta P, Goncalves A, Pacheco R, Sargo R, Igrejas G. 2012. Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J. Med. Microbiol. 61: 837-843. https://doi.org/10.1099/jmm.0.038364-0
  5. Santos T, Silva N, Igrejas G, Rodrigues P, Micael J, Rodrigues T, et al. 2013. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 24: 25-31. https://doi.org/10.1016/j.anaerobe.2013.09.004
  6. Kuntz RL, Hartel PG, Rodgers K, Segars WI. 2004. Presence of Enterococcus faecalis in broiler litter and wild bird feces for bacterial source tracking. Water Res. 38: 3551-3557. https://doi.org/10.1016/j.watres.2004.05.021
  7. Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato- Maeda M, Miller S, et al. 2015. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS One 10: e0117617. https://doi.org/10.1371/journal.pone.0117617
  8. Splichalova P, Svec P, Ghosh A, Zurek L, Oravcova V, Radimersky T, et al. 2015. Prevalence, diversity and characterization of enterococci from three coraciiform birds. Antonie Van Leeuwenhoek 107: 1281-1289. https://doi.org/10.1007/s10482-015-0422-6
  9. Quintela-Baluja M, Bohme K, Fernandez-No IC, Morandi S, Alnakip ME, Caamano-Antelo S, et al. 2013. Characterization of different food-isolated Enterococcus strains by MALDITOF mass fingerprinting. Electrophoresis 34: 2240-2250. https://doi.org/10.1002/elps.201200699
  10. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J. 2005. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151: 2141-2150. https://doi.org/10.1099/mic.0.27840-0
  11. Drancourt M, Roux V, Fournier PE, Raoult D. 2004. rpoB gene sequence-based identification of aerobic gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J. Clin. Microbiol. 42: 497-504. https://doi.org/10.1128/JCM.42.2.497-504.2004
  12. Glazunova OO, Raoult D, Roux V. 2009. Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int. J. Syst. Evol. Microbiol. 59: 2317- 2322. https://doi.org/10.1099/ijs.0.005488-0
  13. Glazunova OO, Raoult D, Roux V. 2010. Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus. Int. J. Syst. Evol. Microbiol. 60: 2140-2148. https://doi.org/10.1099/ijs.0.018176-0
  14. Rahkila R, Johansson P, Sade E, Bjorkroth J. 2011. Identification of enterococci from broiler products and a broiler processing plant and description of Enterococcus viikkiensis sp. nov. Appl. Environ. Microbiol. 77: 1196-1203. https://doi.org/10.1128/AEM.02412-10
  15. Kim JY, Shin NR, Na HK, Hyun DW, Whon TW, Kim PS, et al. 2013. Enterococcus diestrammenae sp. nov., isolated from the gut of Diestrammena coreana. Int. J. Syst. Evol. Microbiol. 63: 4540-4545. https://doi.org/10.1099/ijs.0.050062-0
  16. Li CY, Tian F, Zhao YD, Gu CT. 2014. Enterococcus xiangfangensis sp. nov., isolated from Chinese pickle. Int. J. Syst. Evol. Microbiol. 64: 1012-1017. https://doi.org/10.1099/ijs.0.058917-0
  17. Kadri Z, Spitaels F, Cnockaert M, Praet J, El Farricha O, Swings J, Vandamme P. 2015. Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk. Antonie Van Leeuwenhoek 108: 1257-1265. https://doi.org/10.1007/s10482-015-0579-z
  18. Harada T, Dang VC, Nguyen DP, Nguyen TA, Sakamoto M, Ohkuma M, et al. 2016. Enterococcus saigonensis sp. nov., isolated from retail chicken meat and liver. Int. J. Syst. Evol. Microbiol. 66: 3779-3785. https://doi.org/10.1099/ijsem.0.001264
  19. Bizzini A, Durussel C, Bille J, Greub G, Prod'hom G. 2010. Performance of matrix-assisted laser desorption ionization- time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J. Clin. Microbiol. 48: 1549-1554. https://doi.org/10.1128/JCM.01794-09
  20. Kwak HL, Han SK, Park S, Park SH, Shim JY, Oh M, et al. 2015. Development of a rapid and accurate identification method for Citrobacter species isolated from pork products using a matrix-assisted laser-desorption ionization time-offlight mass spectrometry (MALDI-TOF MS). J. Microbiol. Biotechnol. 25: 1537-1541. https://doi.org/10.4014/jmb.1503.03071
  21. Kim TH, Kweon OJ, Kim HR, Lee MK. 2016. Identification of uncommon Candida species using commercial identification systems. J. Microbiol. Biotechnol. 26: 2206-2213. https://doi.org/10.4014/jmb.1609.09012
  22. Dec M, Urban-Chmiel R, Gnat S, Puchalski A, Wernicki A. 2014. Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis. Res. Microbiol. 165: 190-201. https://doi.org/10.1016/j.resmic.2014.02.003
  23. Dudzic A, Urban-Chmiel R, Stepien-Pysniak D, Dec M, Puchalski A, Wernicki A. 2016. Isolation, identification and antibiotic resistance of Campylobacter strains isolated from domestic and free-living pigeons. Br. Poult. Sci. 57: 172-178. https://doi.org/10.1080/00071668.2016.1148262
  24. Nowakiewicz A, Ziolkowska G, Zieba P, Troscianczyk A, Banach T, Kowalski C. 2015. Modified 16S-23S rRNA intergenic region restriction endonuclease analysis for species identification of Enterococcus strains isolated from pigs, compared with identification using classical methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Med. Microbiol. 64: 217-223. https://doi.org/10.1099/jmm.0.000008
  25. Alispahic M, Christensen H, Hess C, Razzazi-Fazeli E, Bisgaard M, Hess M. 2011. Identification of Gallibacterium species by matrix-assisted laser desorption/ionization timeof- flight mass spectrometry evaluated by multilocus sequence analysis. Int. J. Med. Microbiol. 301: 513-522. https://doi.org/10.1016/j.ijmm.2011.03.001
  26. Eriksson H, Bagge E, Baverud V, Fellstrom C, Jansson DS. 2014. Erysipelothrix rhusiopathiae contamination in the poultry house environment during erysipelas outbreaks in organic laying hen flocks. Avian Pathol. 43: 231-237. https://doi.org/10.1080/03079457.2014.907485
  27. Marek A, Stepien-Pysniak D, Pyzik E, Adaszek L, Wilczynski J, Winiarczyk S. 2016. Occurrence and characterization of Staphylococcus bacteria isolated from poultry in Western Poland. Berl. Munch. Tierarztl. Wochenschr. 129: 147-152.
  28. Stepien-Pysniak D, Wilczynski J, Marek A, Smiech A, Kosikowska U, Hauschild T. 2017. Staphylococcus simulans associated with endocarditis in broiler chickens. Avian Pathol. 46: 44-51. https://doi.org/10.1080/03079457.2016.1203392
  29. Stepien-Pysniak D, Marek A, Banach T, Adaszek L, Pyzik E, Wilczynski J, Winiarczyk S. 2016. Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet. Hung. 64: 148-163. https://doi.org/10.1556/004.2016.016
  30. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K. 2008. Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3: e2843. https://doi.org/10.1371/journal.pone.0002843
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  32. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  33. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  34. Poeta P, Costa D, Saenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C. 2005. Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J. Vet. Med. B Infect. Dis. Vet. Public Health 52: 396-402. https://doi.org/10.1111/j.1439-0450.2005.00881.x
  35. Klibi N, Ben Amor I, Rahmouni M, Dziri R, Douja G, Ben Said L, et al. 2015. Diversity of species and antibiotic resistance among fecal enterococci from wild birds in Tunisia. Detection of vanA-containing Enterococcus faecium isolates. Eur. J. Wildl. Res. 61: 319-323. https://doi.org/10.1007/s10344-014-0884-2
  36. Lasch P, Fleige C, Stammler M, Layer F, Nubel U, Witte W, Werner G. 2014. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J. Microbiol. Methods 100: 58-69. https://doi.org/10.1016/j.mimet.2014.02.015

Cited by

  1. Increased Incidence of Enterococcal Infection in Nonviable Broiler Chicken Embryos in Western Canadian Hatcheries as Detected by Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectro vol.61, pp.4, 2017, https://doi.org/10.1637/11678-052317-reg.1
  2. Surface properties of Enterococcus faecalis cells isolated from chicken hearts determine their low ability to form biofilms vol.34, pp.2, 2017, https://doi.org/10.1080/08927014.2017.1416105
  3. Resistance of Enterococcus spp. in Dust From Farm Animal Houses: A Retrospective Study vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.03074
  4. Biofilm formation capacity and presence of virulence factors among commensal Enterococcus spp. from wild birds vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-47602-w
  5. Limitations of a chromogenic agar plate for the identifying bacteria isolated from equine endometritis samples vol.51, pp.2, 2017, https://doi.org/10.1111/evj.13004
  6. The Enterococcus: a Model of Adaptability to Its Environment vol.32, pp.2, 2019, https://doi.org/10.1128/cmr.00058-18
  7. Campylobacter spp. and bacteriophages from broiler chickens: Characterization of antibiotic susceptibility profiles and lytic bacteriophages vol.8, pp.7, 2017, https://doi.org/10.1002/mbo3.784
  8. MASS SPECTROMETRY‐BASED PERSONALIZED DRUG THERAPY vol.39, pp.5, 2017, https://doi.org/10.1002/mas.21620
  9. First Danish case of infective endocarditis caused by Enterococcus hirae vol.13, pp.12, 2017, https://doi.org/10.1136/bcr-2020-237950
  10. Phenotypic and genotypic characterization of Enterococcus spp. from yolk sac infections in broiler chicks with a focus on virulence factors vol.100, pp.4, 2021, https://doi.org/10.1016/j.psj.2021.01.008
  11. SEABIRDS AS POSSIBLE RESERVOIRS OF ERYSIPELOTHRIX RHUSIOPATHIAE ON ISLANDS USED FOR CONSERVATION TRANSLOCATIONS IN NEW ZEALAND vol.57, pp.3, 2021, https://doi.org/10.7589/jwd-d-20-00177
  12. Characterization and Comparison of Enterococcus spp. Isolates from Feces of Healthy Dogs and Urine of Dogs with UTIs vol.11, pp.10, 2017, https://doi.org/10.3390/ani11102845
  13. Enterococcus hirae bacteremia associated with acute pyelonephritis in a patient with alcoholic cirrhosis: a case report and literature review vol.21, pp.1, 2017, https://doi.org/10.1186/s12879-021-06707-2
  14. Clinically Applicable System for Rapidly Predicting Enterococcus faecium Susceptibility to Vancomycin vol.9, pp.3, 2017, https://doi.org/10.1128/spectrum.00913-21
  15. Use of MALDI-TOF for identification and surveillance of gram-negative bacteria in captive wild psittacines vol.82, pp.None, 2022, https://doi.org/10.1590/1519-6984.233523