DOI QR코드

DOI QR Code

벤젠이 흡착된 Cd2+-Y(FAU) 제올라이트의 합성 및 구조연구

Synthesis and Structural Characterization of Benzene-sorbed Cd2+-Y(FAU) Zeolite

  • 문대준 (안동대학교 응용화학과) ;
  • 서정민 (부산대학교 바이오환경에너지학과) ;
  • 박종삼 (대구보건대학교 방사선과) ;
  • 최식영 (안동대학교 응용화학과) ;
  • 임우택 (안동대학교 응용화학과)
  • Moon, Dae Jun (Department of Applied Chemistry, Andong National University) ;
  • Suh, Jeong-Min (Department of Bio-Environmental Energy, Pusan National University) ;
  • Park, Jong Sam (Department of Radiologic Technology, Daegu Health College) ;
  • Choi, Sik Young (Department of Applied Chemistry, Andong National University) ;
  • Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
  • 투고 : 2017.04.25
  • 심사 : 2017.06.15
  • 발행 : 2017.06.30

초록

$Cd^{2+}$ 이온으로 교환된 제올라이트 Y 단결정은 294 K에서 ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al=1.56)에 0.05 M인 $Cd(NO_3)_2$(pH = 3.65)수용액으로 교환하여 723 K에서 진공 탈수를 통해 준비하였고(crystal 1) 두 번째 결정은 첫 번째 결정과 같이 준비한 뒤 294 K에서 건조된 벤젠을 72시간 동안 노출시켜 준비했다(crystal 2). 이들의 구조는 싱크로트론 X-선을 이용하여 결정학적으로 확인하였고 $F_o$>$4{\sigma}(F_o)$를 사용하여 최종 오차 인자를 각각 $R_1/wR_2=0.040/0.121$ 그리고 0.052/0.168로 정밀화하였다. Crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$에서 $Cd^{2+}$이온은 주로 site I과 site IIa에 점유되어 있었고, 이와 더불어 site I', II' 그리고 site IIb에도 $Cd^{2+}$ 이온이 점유되어졌다. Crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$에서 $Cd^{2+}$ 이온은 다섯 개의 결정학적 자리에 점유되었다. 24개의 벤젠분자는 supercage 내부에서 두 개의 뚜렷한 자리에서 발견 되었다. 17개의 벤젠분자는 site IIa에 있는 $Cd^{2+}$ 이온과 면상에서 서로 상호작용하였고 supercage 안에서 3회 회전축 상에서 발견되었다. 나머지 7개의 벤젠분자는 12-ring 면상에서 골격(framework)산소들과 함께 약한 다수의 정전기적인 작용과 van der Waals 상호작용으로 안정화되어 있었다.

Two single crystals of fully dehydrated $Cd^{2+}$-exchanged zeolites Y were prepared by the exchange of ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al = 1.56) with aqueous $0.05M\;Cd(NO_3)_2$ (pH = 3.65) at 294 K, followed by vacuum dehydration at 723 K (crystal 1) and a second crystal, similarly prepared, was exposed to zeolitically dried benzene for 72 hours at 294 K and evacuated (crystal 2). Their structures were determined crystallographically using synchrotron X-rays and were refined to the final error indices using $F_o$>$4{\sigma}(F_o)$ of $R_1/wR_2=0.040/0.121$ and 0.052/0.168, respectively. In crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions primarily occupy sites I and II, with additional $Cd^{2+}$ ions at sites I', II', and a second site II. In crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions occupy five crystallographic sites. The 24 benzene molecules are found at two distinct positions within the supercages. The 17 benzene molecules are found on the 3-fold axes in the supercages where each interacts facially with one of site IIa $Cd^{2+}$ ions. The remaining 7 benzene molecules lie on the planes of the 12-rings where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

키워드

참고문헌

  1. Bae, M. N. and Kim, Y. (1998) Crystal Structure of an Acetylene Sorption Complex of Dehydrated Fully Mn(II)-Exchanged Zeolite X. Bulletin of the Korean Chemical Society, 19, 1095-1098.
  2. Bruker-AXS (ver. 6.12), XPREP, Program for the Automatic Space Group Determination, Bruker AXS Inc., Madison, WI (2001).
  3. Bekkum, H. V., Flanigen, E. M., Jacobs, P. A., and Jansen, J. C. (2001) Introduction to Zeolite Science and Practice. Elsevier, 44p.
  4. Chon, H., Ihm, S.-K., and Uh, Y. S. (1997) Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 105, 811p.
  5. Choi, E. Y., Kim, Y., and Seff, K. (2002) Crystal Structure of a Mesitylene Sorption Complex of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite X. Sorbed Mesitylene Appears to be Significantly Nonplanar. Journal of Physical Chemistry B, 106, 5827-5832. https://doi.org/10.1021/jp0140522
  6. Choi, E. Y., Kim, Y., Han, Y. W., and Seff, K. (2000) Structure of a cyclopropane sorption complex of dehydrated fully $Mn^{2+}$-exchanged zeolite X. Microporous and Mesoporous Materials, 40, 247-255. https://doi.org/10.1016/S1387-1811(00)00253-5
  7. Cromer, D. T. (1965) Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions. Acta Crystallographica, 18, 17-23. https://doi.org/10.1107/S0365110X6500004X
  8. Doyle, P. A. and Turner, P. S. (1968) Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallographica A, 24, 390-397. https://doi.org/10.1107/S0567739468000756
  9. Ibers, J. A. and Hamilton, W. C. (1974a) International Tables for X-ray Crystallography, Kynoch Press, Birmingham, IV, 71-98.
  10. Ibers, J. A. and Hamilton, W. C. (1974b) International Tables for X-ray Crystallography, Kynoch Press, Birmingham, IV, 148-150.
  11. Jang, S. B., Jeong, M. S., Kim, Y., and Seff, K. (1997) Crystal Structures of Dehydrated Fully $Mn^{2+}$-Exchanged Zeolite X and of Its Ethylene Sorption Complex. Journal of Physical Chemistry B, 101, 9041-9045. https://doi.org/10.1021/jp971671v
  12. Kim, Y., Yeom, Y. H., Choi, E. Y., Kim, A. N., and Han, Y. W. (1998) Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Cd^{2+}$- Exchanged Zeolite X. Bulletin of the Korean Chemical Society, 19, 1222-1226.
  13. Kwon, J. H., Jang, S. B., Kim, Y., and Seff, K. (1996) Two Anhydrous Zeolite X Crystal Structures, $Cd_{46}Si_{100}Al_{92}O_{384}$ and $Cd_{24.5}Tl_{43}Si_{100}Al_{92}O_{384}$. Journal of Physical Chemistry, 100, 13720-13724. https://doi.org/10.1021/jp9603647
  14. Lim, W. T., Seo, S. M. Okubo, T., and Park, M. (2010a) Crystallinity of large single crystals of FAU-type zeolites with a wide range of Si/Al ratios. Journal of Porous Materials, 18, 305-317.
  15. Lim, W. T., Seo, S. M., Wang, L., Lu, G. Q., and Seff, K. (2010b) Single-crystal structures of highly $NH^{4+}$-exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Microporous and Mesoporous Materials, 129, 11-21. https://doi.org/10.1016/j.micromeso.2009.08.028
  16. Loewenstein, W. (1954) The distribution of a aluminium in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 92-96.
  17. Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallographica Section D, 62, 859-866. https://doi.org/10.1107/S0907444906019949
  18. Moon, D. J., Lim, W. T., and Seff, K. (2016) Structures of the Subnanometer Clusters of Cadmium Sulfide Encapsulated in Zeolite Y: $Cd_4S^{6+}$ and $Cd(SHCd)_4{6+}$. Journal of Physical Chemistry C, 120, 16722-16731. https://doi.org/10.1021/acs.jpcc.6b04369
  19. Robert, C. W. (1989/1990) Handbook of Chemistry and Physics, 70th ed., The Chemical Rubber Co.: Cleveland, OH, F-187p.
  20. Shamsuzzoha, M., Kim, Y. H., and Lim, W. T. (2011a) Single-Crystal Structures of the o-, m-, and p-Xylene Sorption Complexes of Fully Dehydrated, Fully $Mn^{2+}$-Exchanged Zeolite Y (FAU). Journal of Physical Chemistry C, 115, 17750-17760. https://doi.org/10.1021/jp205813k
  21. Shamsuzzoha, M., Kim, Y. H., and Lim, W. T. (2011b) Single-Crystal Structure of a Toluene Sorption Complex of Fully Dehydrated, Fully $Mn^{2+}$- Exchanged Zeolite Y (FAU), ${\left|Mn_{37.5}(C_7H_8)_{17}\right|}\;{\left[Si_{117}Al_{75}O_{384}\right]}$-FAU. Journal of Physical ChemistryC, 115, 24681-24687.
  22. Shamsuzzoha, M., Seo, S. M., Kim, Y. H., and Lim, W. T. (2011c) Preparation and single-crystal structure of mesitylene sorption complex of fully dehydrated fully $Mn^{2+}$-exchanged zeolite Y (FAU). Microporous and Mesoporous Materials, 143, 326-332. https://doi.org/10.1016/j.micromeso.2011.03.013
  23. Shamsuzzoha, M.. Seo, S. M., Kim, Y. H., and Lim, W. T. (2011d) Benzene sorption complex of fully dehydrated fully $Mn^{2+}$-exchanged zeolite Y (FAU) and its single-crystal structure. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70, 59-68. https://doi.org/10.1007/s10847-010-9862-9
  24. Sheldon, R. A., Elings, J. A., Lee, S. K., Lempers, H. E. B., and Downing, R. S. (1998) Zeolite-catalysed rearrangements in organic synthesis. Journal of Molecular Catalysis A: Chemical, 134, 129-135. https://doi.org/10.1016/S1381-1169(98)00029-6
  25. Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112-122. https://doi.org/10.1107/S0108767307043930
  26. Stoicheff, B. P. (1954) High resolution Raman spectroscopy of gases. II. Rotational spectra of $C_6H_6$ and $C_6D_6$ and internuclear distances in the benzene molecule. Canadian Journal of Physics, 32, 339-346. https://doi.org/10.1139/p54-033
  27. Tanabe, K. and Hoelderich, W. (1999) Industrial application of solid acid-base catalysts. Applied Catalysis A: General, 181, 399-434. https://doi.org/10.1016/S0926-860X(98)00397-4
  28. Yeom, Y. H., Kim, A. N., Kim, Y., Song, S. H., and Seff, K. (1998) Crystal Structure of a Benzene Sorption Complex of Dehydrated Fully $Ca^{2+}$- Exchanged Zeolite X. Journal of Physical Chemistry B, 102, 6071-6077. https://doi.org/10.1021/jp981437k
  29. Zhu, L., Seff, K. Olson, D. H., Cohen, B. J., and Dreele, R. B. V. (1999) Hydronium Ions in Zeolites. 1. Structures of Partially and Fully Dehydrated $Na,H_3O-X$ by X-ray and Neutron Diffraction. Journal of Physical Chemistry B, 103, 10365-10372. https://doi.org/10.1021/jp991070z