DOI QR코드

DOI QR Code

밀리미터파(W 밴드) FMCW SAR 기반 전방의 이동지상표적 탐지 및 위치와 속도 추정

Forward-Looking GMTI and Estimation of Position and Velocity Based on Millimeter-Wave(W-Band) FMCW SAR

  • 이혁중 (한국과학기술원 전기 및 전자공학부) ;
  • 전주환 (한국과학기술원 전기 및 전자공학부) ;
  • 송성찬 (한화시스템)
  • 투고 : 2016.04.12
  • 심사 : 2017.05.23
  • 발행 : 2017.06.30

초록

지상의 주력전차를 격추시키기 위한 공대지 유도미사일은 지상을 탐색하여 움직이는 표적을 탐지한 다음 위치를 추정하여 표적을 향해 나아가야 한다. 본 논문에서는 미사일이 향하는 전방의 지상을 좁은 빔 폭을 가진 빔을 기계적으로 좌우로 조향함으로써 일정한 지상구간을 탐색하며 Frequency Modulated Continuous Wave(FMCW)를 활용하여 이동하는 표적을 탐지하고 합성개구레이다(synthetic aperture radar: SAR)를 통해 위치를 추정한다. 또한 최대우도추정(maximum likelihood estimation: MLE) 기법을 통해 이동표적의 상대속도를 추정하여 레이다와 가까워지는 혹은 멀어지는 정도를 알 수 있으며 상대속도가 고려된 위상기록(phase history)을 통해 보정된 정합필터로 레이다 이미지(image)를 형성한다.

An air-to-ground guidance missile aimed to hit a main battle tank(MBT) should detect a ground moving target and estimate the target position to guide. In this paper, we detect a front ground moving target by using FMCW(Frequency Modulated Continuous Wave) and estimate the position by forward-looking SAR(Synthetic Aperture Radar) via scanning certain front ground section by steering a beam with narrow beamwidth left to right mechanically. Also, by MLE(Maximum Likelihood Estimation), degree of how fast the target approach or recede from the radar can be figured out from the estimated radial velocity of the moving target. Subsequently, we generate a radar image via corrected matched filter from phase history including the radial velocity.

키워드

참고문헌

  1. Brooker, Graham, Alan T. Brooker, Introduction to Sensors for Ranging and Imaging, SciTech Pub. Incorporated, 2009.
  2. Meta, Adriano, Signal Processing of FMCW Synthetic Aperture Radar Data, TU Delft, Delft University of Technology, 2006.
  3. R. Wang, O. Loffeld, H. Nies, S. Knedlik, M. Hagelen, and H. Essen, "Focus FMCW SAR data using the wavenumber domain algorithm", IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 4, pp. 2109- 2118, 2010. https://doi.org/10.1109/TGRS.2009.2034368
  4. A. Ribalta, "Time-domain reconstruction algorithms for FMCW-SAR", IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 3, pp. 396-400, 2011. https://doi.org/10.1109/LGRS.2010.2078486
  5. Z. H. Jiang, H. F. Kan, and J. W. Wan, "A chirp transform algorithm for processing squint mode FMCW SAR data", IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 3, pp. 377-381, 2007. https://doi.org/10.1109/LGRS.2007.895689
  6. Yue Liu, Yun Kai Deng, R. Wang, and O. Loffeld, "Bistatic FMCW SAR signal model and imaging approach", IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 3, pp. 2017-2028, 2013. https://doi.org/10.1109/TAES.2013.6558035
  7. P. Cheng, Q. Xin, J. Wan, and Z. Wang, "Efficient detection of ground moving targets in FMCW SAR by focusing", IEEE Transactions on Geoscience and Remote Sensing (IGARSS), vol. 53, no. 2, pp. 920-932, 2015. https://doi.org/10.1109/TGRS.2014.2330456
  8. A. Meta, P. Hoogeboom, "Signal processing algorithms for FMCW moving target indicator synthetic aperture radar", in Proc. IGARSS '05, vol. 1, pp. 316-319, 2005.
  9. Eric Jacobsen, Peter Kootsookos, "Fast, accurate frequency estimators", IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 123-125, 2007. https://doi.org/10.1109/MSP.2007.361611
  10. Ozdemir Caner, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms, vol. 210, John Wiley & Sons, 2012.
  11. Soumekh, Mehrdad. Synthetic Aperture Radar Signal Processing, New York: Wiley, 1999.
  12. Beard, Gavin Spencer, Performance Factors for Airborne Short-Dwell Squinted Radar Sensors, Diss. UCL (University College London), 2011.