DOI QR코드

DOI QR Code

Material and Geometric Nonlinear Analysis of Plane Structure Using Co-rotational Fiber-section Beam Elements

동시회전의 화이버 단면 보 요소를 이용한 평면 구조물의 재료 및 기하 비선형 해석

  • Kim, Jeongsoo (Structural Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Moon Kyum (Department of Civil and Environmental Engineering, Yonsei University)
  • 김정수 (한국건설기술연구원 구조융합연구소) ;
  • 김문겸 (연세대학교 토목환경공학과)
  • Received : 2017.04.20
  • Accepted : 2017.05.29
  • Published : 2017.06.30

Abstract

This paper presents a beam element capable of conducting material and geometric nonlinear analysis for applications requiring the ultimate behavioral analysis of structures with composite cross-sections. The element formulation is based on co-rotational kinematics to simulate geometrically nonlinear behaviors, and it uses the fiber section method to calculate the stiffness and internal forces of the element. The proposed element was implemented using an in-house numerical program in which an arc-length method was adopted to trace severe nonlinear responses(such as snap-through or snapback), as well as ductile behavior after the peak load. To verify the proposed method of element formulation and the accuracy of the program that was used to employ the element, several numerical studies were conducted and the results from these numerical models were compared with those of three-dimensional continuum models and previous studies, to demonstrate the accuracy and computational efficiency of the element. Additionally, by evaluating an example case of a frame structure with a composite member, the effects of differences between composite material properties such as the elastic modulus ratio and strength ratio were analyzed. It was found that increasing the elastic modulus of the external layer of a composite cross-section caused quasi-brittle behavior, while similar responses of the composite structure to those of homogeneous and linear materials were shown to increase the yield strength of the external layer.

본 논문에서는 합성단면을 갖는 구조물의 극한 거동 해석에서 요구하는 재료 및 기하학적 비선형 해석을 수행하기 위한 보 요소를 제시하였다. 제안된 요소는 기하학적 비선형성을 효과적으로 모사할 수 있는 co-rotational 정식화를 통해 도출되었으며, 다양한 합성단면의 저항성능을 재현할 수 있도록 화이버 단면법이 요소의 내력 및 강성을 산정하는데 활용되었다. 제안된 방법을 구현할 수 있도록 해석 프로그램이 개발되었으며, 호장법을 적용하여 최대내력 발생 이후의 연성거동뿐만 아니라 심한 비선형 응답(snap-through 또는 snapback)까지 추적해낼 수 있도록 하였다. 본 연구에서 제안된 요소 정식화와 해석 프로그램의 정확성을 검증을 위해 몇 가지 수치예제가 수행되었고, 해석결과는 제안된 요소의 정확성과 효율성을 보이기 위해 3차원 연속체 모델 및 기존 연구의 결과와 비교되었다. 추가로 합성단면을 갖는 골조 구조물에 대한 수치예제를 통해, 합성단면을 구성하는 재료의 탄성계수 비 및 강도 비에 따른 영향을 분석하였다. 해석결과는 외층 재료의 탄성계수가 증가됨에 따라 준취성 거동이 나타났으며, 외층 재료의 항복강도가 높을수록 선형 거동하는 기하적 비선형 응답과 유사한 응답을 보였다.

Keywords

References

  1. Borst, R.D., Crisfield, M.A., Remmers, J.C., Verhoosel, C.V. (2012) Nonlinear Finite Element Analysis of Solids and Structures, 2nd ed., Wiley, pp.116-124.
  2. Crisfield, M.A. (1990) A Consistent Co-rotational Formulation for Non-linear, Three-dimensional, Beam-elements, Comput. Methods Appl. Mech. & Eng., 81, pp.131-150. https://doi.org/10.1016/0045-7825(90)90106-V
  3. De Souza, R.M. (2000) Force-based Finite Element for Large Displacement Inelastic Analysis of Frames, PhD. Dissertation, University of California, Berkeley.
  4. Hur, J.S., Kim, S.R., Hwang, J.D., Seo, Y.W., Jung, M.K. (2013) A Study on the Performance-based Design Methodology for Tunnels through Case Study on the Tunnel Built by the Prescribed Design, J. Korean Tunn. & Undergr. Space Assoc., 15, pp.415-429. https://doi.org/10.9711/KTAJ.2013.15.4.415
  5. Kim, J.S., Yu, J.H., Kim, M.K. (2014) Numerical Study on Shotcrete Lining with Steel Reinforcement using a Fiber Section Element, J. Korean Soc. Civil Eng., 34, pp.919-930. https://doi.org/10.12652/Ksce.2014.34.3.0919
  6. Ko, J.W., Bin, Y.B., Eun, W.J., Shin. S.J. (2015) Linear Analysis and Non-linear Analysis with Co-rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads, J. Comput. Struct. Eng. Inst. Korea, 28, pp.467-475. https://doi.org/10.7734/COSEIK.2015.28.5.467
  7. Kim, S.I., Kim, Y.S., Park, C.W., Shin, S.J. (2016) Study on Vibration Characteristics in Terms of Airfoil Cross-Sectional Shape by using Co-rotational Plane Beam Transient Analysis, J. Comput. Struct. Eng. Inst. Korea, 29, pp.389-395. https://doi.org/10.7734/COSEIK.2016.29.5.389
  8. Lee, B.G., Park, T.H., Lee, S.Y. (2008) Introduction and Necessity of Concept of Demand for Performancebased Design, Proc. Korea Concr. Inst. Conf., 20, pp.125-128.
  9. Le Corvec, V. (2012) Nonlinear 3d Frame Element with Multi-axial Coupling under Consideration of Local Effects, PhD. Dissertation, University of California, Berkeley.
  10. Lee, S., Manuel, F.S., Rossow, E.C. (1968) Large Deflections and Stability of Elastic Frames, J. Eng. Mech. Div., ASCE, 94, pp.521-548.
  11. Parente, JR.E., Nogueira, G.V., Meireles Neto, M., Moreira, L.S. (2014) Material and Geometric Nonlinear Analysis of Reinforced Concrete Frames, IBRACON Struct. & Mater. J., 7, pp.879-904.
  12. Rankin, C.C., Brogan, F.A. (1986) An Element Independent Co-rotational Procedure for the Treatment of Large Rotations, ASME J. Press. & Vessel Tech., 108, pp.165-174. https://doi.org/10.1115/1.3264765
  13. Spacone, E., Filippou, F.C., Taucer, F.F. (1996) Fiber Beam-column Model for Non-linear Analysis of R/C Frames: Part I. Formulation, Earthq. Eng. & Struct. Dyn., 25, pp.711-726. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  14. Teh, L.H., Clarke, M.J. (1998) Co-rotational and Lagrangian Formulations for Elastic Three-dimensional Beam Finite Elements, J. Constr. Steel Res., 48, pp.123-144. https://doi.org/10.1016/S0143-974X(98)00200-4
  15. Xu, J., Lee, C.K., Tan, K.H. (2012) A Two-dimensional Co-rotational Timoshenko Beam Element with XFEM Formulation, Comput. Mech., 49, pp.667-683. https://doi.org/10.1007/s00466-011-0670-x
  16. Yaw, L.L. (2009) 2D Corotational Beam Formulation, Walla Walla Univ.
  17. Yoon, K., Lee, Y., Lee, P.H. (2012) A Continuum Mechanics based 3-D Beam Finite Element with Warping Displacements and Its Modeling Capabilities, Struct. Eng. & Mech., 43, pp.411-437. https://doi.org/10.12989/sem.2012.43.4.411
  18. Yoon, K., Lee, P.H., Kim, D.N. (2015) Geometrically Nonlinear Finite Element Analysis of Functionally Graded 3D Beams Considering Warping Effects, Compos. Struct,, 132, pp.1231-1247. https://doi.org/10.1016/j.compstruct.2015.07.024
  19. Zhang, X., Rasmussen, K.J.R., Zhang, H. (2011) Formulation and implementation of three-dimensional doubly symmetric beam-column analyses with warping effects in OpenSees, Research Report R917.