References
- Boyd, B. J., Khoo, S. M., Whittaker, D. V., Davey, G. and Porter, C. J. (2007) A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm. 340, 52-60. https://doi.org/10.1016/j.ijpharm.2007.03.020
- Desai, J. and Thakkar, H. (2016) Effect of particle size on oral bioavailability of darunavir-loaded solid lipid nanoparticles. J. Microencapsul. 33, 669-678. https://doi.org/10.1080/02652048.2016.1245363
- Dingler, A. and Gohla, S. (2002) Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J. Microencapsul. 19, 11-16. https://doi.org/10.1080/02652040010018056
- Dixon, R. A. and Ferreira, D. (2002) Genistein. Phytochemistry 60, 205-211. https://doi.org/10.1016/S0031-9422(02)00116-4
- Drover, D. R., Angst, M. S., Valle, M., Ramaswamy, B., Naidu, S., Stanski, D. R. and Verotta, D. (2002) Input characteristics and bioavailability after administration of immediate and a new extendedrelease formulation of hydromorphone in healthy volunteers. Anesthesiology 97, 827-836. https://doi.org/10.1097/00000542-200210000-00013
- Emami, J., Mohiti, H., Hamishehkar, H. and Varshosaz, J. (2015) Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res. Pharm. Sci. 10, 17-33.
- Harde, H., Das, M. and Jain, S. (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert. Opin. Drug Deliv. 8, 1407-1424. https://doi.org/10.1517/17425247.2011.604311
- Horter, D. and Dressman, J. B. (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 46, 75-87. https://doi.org/10.1016/S0169-409X(00)00130-7
- Kumar, D. S. and Pandit, J. K. (1997) Relationship between dissolution rate and bioavailability of sustained-release ibuprofen capsules. Drug Dev. Ind. Pharm. 23, 987-992. https://doi.org/10.3109/03639049709149151
- Kwon, S. H., Kim, S. Y., Ha, K. W., Kang, M. J., Huh, J. S., Im, T. J., Kim, Y. M., Park, Y. M., Kang, K. H., Lee, S., Chang, J. Y., Lee, J. and Choi, Y. W. (2007) Pharmaceutical evaluation of genisteinloaded pluronic micelles for oral delivery. Arch. Pharm. Res. 30, 1138-1143. https://doi.org/10.1007/BF02980249
- Lee, S. H., Kim, Y. H., Yu, H. J., Cho, N. S., Kim, T. H., Kim, D. C., Chung, C. B., Hwang, Y. I. and Kim, K. H. (2007) Enhanced bioavailability of soy isoflavones by complexation with beta-cyclodextrin in rats. Biosci. Biotechnol. Biochem. 71, 2927-2933. https://doi.org/10.1271/bbb.70296
- Li, H. L., Zhao, X. B., Ma, Y. K., Zhai, G. X., Li, L. B. and Lou, H. X. (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 133, 238-244. https://doi.org/10.1016/j.jconrel.2008.10.002
- Li, Y., Sun, D., Palmisano, M. and Zhou, S. (2016) Slow drug delivery decreased total body clearance and altered bioavailability of immediate-and controlled-release oxycodone formulations. Pharmacol. Res. Perspect. 4, e00210. https://doi.org/10.1002/prp2.210
- Luo, Y., Chen, D. W., Ren, L. X., Zhao, X. L. and Qin, J. (2006) Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J. Control. Release 114, 53-59. https://doi.org/10.1016/j.jconrel.2006.05.010
- Mathot, F., Van Beijsterveldt, L., Preat, V., Brewster, M. and Arien, A. (2006) Intestinal uptake and biodistribution of novel polymeric micelles after oral administration. J. Control. Release 111, 47-55. https://doi.org/10.1016/j.jconrel.2005.11.012
- Mehnert, W. and Mader, K. (2001) Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165-196. https://doi.org/10.1016/S0169-409X(01)00105-3
- Muller, R. H., Mader, K. and Gohla, S. (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161-177. https://doi.org/10.1016/S0939-6411(00)00087-4
- Muller, R. H., Runge, S., Ravell, V., Mehnert, W., Thunemann, A. F. and Souto, E. B. (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm. 317, 82-89. https://doi.org/10.1016/j.ijpharm.2006.02.045
- Munish, A., Meenakshi, B. and Komal, S. (2016) Sodium alginate-arabinoxylan composite microbeads: preparation and characterization. J. Pharm. Investig. 46, 645-653. https://doi.org/10.1007/s40005-016-0244-1
- Pankaj, V. D., Ritu, M. G. and Shashikant, N. D. (2016) Formulation and development of solid self micro-emulsifying drug delivery system (S-SMEDDS) containing chlorthalidone for improvement of dissolution. J. Pharm. Investig. 46, 633-644. https://doi.org/10.1007/s40005-016-0243-2
- Reithmeier, H., Herrmann, J. and Gopferich, A. (2001) Lipid microparticles as a parenteral controlled release device for peptides. J. Control. Release 73, 339-350. https://doi.org/10.1016/S0168-3659(01)00354-6
- Scalia, S., Young, P. M. and Traini, D. (2015) Solid lipid microparticles as an approach to drug delivery. Expert. Opin. Drug Deliv. 12, 583-599. https://doi.org/10.1517/17425247.2015.980812
- Shelnutt, S. R., Cimino, C. O., Wiggins, P. A., Ronis, M. J. and Badger, T. M. (2002) Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am. J. Clin. Nutr. 76, 588-594. https://doi.org/10.1093/ajcn/76.3.588
- Takeuchi, H., Matsui, Y., Yamamoto, H. and Kawashima, Y. (2003) Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J. Control. Release 86, 235-242. https://doi.org/10.1016/S0168-3659(02)00411-X
- Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z. and Wu, L. (2011) Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment. Int. J. Nanomedicine 6, 2429-2435.
- Tripathi, S., Kushwah, V., Thanki, K. and Jain, S. (2016) Triple antioxidant SNEDDS formulation with enhanced oral bioavailability: Implication of chemoprevention of breast cancer. Nanomedicine 12, 1431-1443. https://doi.org/10.1016/j.nano.2016.03.003
- Uner, M. and Yener, G. (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine 2, 289-300.
- Yang, Z., Kulkarni, K., Zhu, W. and Hu, M. (2012) Bioavailability and Pharmacokinetics of Genistein: Mechanistic Studies on its ADME. Anticancer Agents Med. Chem. 12, 1264-1280. https://doi.org/10.2174/187152012803833107
- Zhang, Y., Song, T. T., Cunnick, J. E., Murphy, P. A. and Hendrich, S. (1999) Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J. Nutr. 129, 399-405. https://doi.org/10.1093/jn/129.2.399
Cited by
- Activators against Metabolic and Drug-Induced Oxidative Injury vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/1378175
- Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system vol.44, pp.9, 2018, https://doi.org/10.1080/03639045.2018.1483384
- Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel vol.45, pp.3, 2019, https://doi.org/10.1080/03639045.2018.1542706
- Formulation and Characterization of Genistein-loaded Nanostructured Lipid Carriers: Pharmacokinetic, Biodistribution and In vitro Cytotoxicity Studies vol.16, pp.3, 2019, https://doi.org/10.2174/1567201816666181120170137
- Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome vol.60, pp.3, 2017, https://doi.org/10.1093/jrr/rrz014
- Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs vol.15, pp.6, 2017, https://doi.org/10.1080/17425255.2019.1621289
- Preparation and Characterization of PEG-PLA Genistein Micelles Using a Modified Emulsion-Evaporation Method vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3278098
- Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives vol.20, pp.13, 2020, https://doi.org/10.2174/1568026620666200416085330
- Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport vol.13, pp.2, 2017, https://doi.org/10.3390/pharmaceutics13020267
- Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir vol.26, pp.18, 2021, https://doi.org/10.3390/molecules26185432
- Oral delivery of solid lipid nanoparticles: underlining the physicochemical characteristics and physiological condition affecting the lipolysis rate vol.18, pp.11, 2017, https://doi.org/10.1080/17425247.2021.1982891