DOI QR코드

DOI QR Code

Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes

  • Kim, Jeong Tae (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Barua, Sonia (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Kim, Hyeongmin (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Hong, Seong-Chul (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Yoo, Seung-Yup (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Jeon, Hyojin (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Cho, Yeongjin (Department of Pharmaceutical Industry, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Gil, Sangwon (Department of Pharmaceutical Industry, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Oh, Kyungsoo (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University) ;
  • Lee, Jaehwi (College of Pharmacy, Graduate School of Pharmaceutical Management, Chung-Ang University)
  • Received : 2017.04.24
  • Accepted : 2017.05.16
  • Published : 2017.07.01

Abstract

In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

Keywords

References

  1. Boyd, B. J., Khoo, S. M., Whittaker, D. V., Davey, G. and Porter, C. J. (2007) A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm. 340, 52-60. https://doi.org/10.1016/j.ijpharm.2007.03.020
  2. Desai, J. and Thakkar, H. (2016) Effect of particle size on oral bioavailability of darunavir-loaded solid lipid nanoparticles. J. Microencapsul. 33, 669-678. https://doi.org/10.1080/02652048.2016.1245363
  3. Dingler, A. and Gohla, S. (2002) Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J. Microencapsul. 19, 11-16. https://doi.org/10.1080/02652040010018056
  4. Dixon, R. A. and Ferreira, D. (2002) Genistein. Phytochemistry 60, 205-211. https://doi.org/10.1016/S0031-9422(02)00116-4
  5. Drover, D. R., Angst, M. S., Valle, M., Ramaswamy, B., Naidu, S., Stanski, D. R. and Verotta, D. (2002) Input characteristics and bioavailability after administration of immediate and a new extendedrelease formulation of hydromorphone in healthy volunteers. Anesthesiology 97, 827-836. https://doi.org/10.1097/00000542-200210000-00013
  6. Emami, J., Mohiti, H., Hamishehkar, H. and Varshosaz, J. (2015) Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res. Pharm. Sci. 10, 17-33.
  7. Harde, H., Das, M. and Jain, S. (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert. Opin. Drug Deliv. 8, 1407-1424. https://doi.org/10.1517/17425247.2011.604311
  8. Horter, D. and Dressman, J. B. (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv. Drug Deliv. Rev. 46, 75-87. https://doi.org/10.1016/S0169-409X(00)00130-7
  9. Kumar, D. S. and Pandit, J. K. (1997) Relationship between dissolution rate and bioavailability of sustained-release ibuprofen capsules. Drug Dev. Ind. Pharm. 23, 987-992. https://doi.org/10.3109/03639049709149151
  10. Kwon, S. H., Kim, S. Y., Ha, K. W., Kang, M. J., Huh, J. S., Im, T. J., Kim, Y. M., Park, Y. M., Kang, K. H., Lee, S., Chang, J. Y., Lee, J. and Choi, Y. W. (2007) Pharmaceutical evaluation of genisteinloaded pluronic micelles for oral delivery. Arch. Pharm. Res. 30, 1138-1143. https://doi.org/10.1007/BF02980249
  11. Lee, S. H., Kim, Y. H., Yu, H. J., Cho, N. S., Kim, T. H., Kim, D. C., Chung, C. B., Hwang, Y. I. and Kim, K. H. (2007) Enhanced bioavailability of soy isoflavones by complexation with beta-cyclodextrin in rats. Biosci. Biotechnol. Biochem. 71, 2927-2933. https://doi.org/10.1271/bbb.70296
  12. Li, H. L., Zhao, X. B., Ma, Y. K., Zhai, G. X., Li, L. B. and Lou, H. X. (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 133, 238-244. https://doi.org/10.1016/j.jconrel.2008.10.002
  13. Li, Y., Sun, D., Palmisano, M. and Zhou, S. (2016) Slow drug delivery decreased total body clearance and altered bioavailability of immediate-and controlled-release oxycodone formulations. Pharmacol. Res. Perspect. 4, e00210. https://doi.org/10.1002/prp2.210
  14. Luo, Y., Chen, D. W., Ren, L. X., Zhao, X. L. and Qin, J. (2006) Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J. Control. Release 114, 53-59. https://doi.org/10.1016/j.jconrel.2006.05.010
  15. Mathot, F., Van Beijsterveldt, L., Preat, V., Brewster, M. and Arien, A. (2006) Intestinal uptake and biodistribution of novel polymeric micelles after oral administration. J. Control. Release 111, 47-55. https://doi.org/10.1016/j.jconrel.2005.11.012
  16. Mehnert, W. and Mader, K. (2001) Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165-196. https://doi.org/10.1016/S0169-409X(01)00105-3
  17. Muller, R. H., Mader, K. and Gohla, S. (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161-177. https://doi.org/10.1016/S0939-6411(00)00087-4
  18. Muller, R. H., Runge, S., Ravell, V., Mehnert, W., Thunemann, A. F. and Souto, E. B. (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm. 317, 82-89. https://doi.org/10.1016/j.ijpharm.2006.02.045
  19. Munish, A., Meenakshi, B. and Komal, S. (2016) Sodium alginate-arabinoxylan composite microbeads: preparation and characterization. J. Pharm. Investig. 46, 645-653. https://doi.org/10.1007/s40005-016-0244-1
  20. Pankaj, V. D., Ritu, M. G. and Shashikant, N. D. (2016) Formulation and development of solid self micro-emulsifying drug delivery system (S-SMEDDS) containing chlorthalidone for improvement of dissolution. J. Pharm. Investig. 46, 633-644. https://doi.org/10.1007/s40005-016-0243-2
  21. Reithmeier, H., Herrmann, J. and Gopferich, A. (2001) Lipid microparticles as a parenteral controlled release device for peptides. J. Control. Release 73, 339-350. https://doi.org/10.1016/S0168-3659(01)00354-6
  22. Scalia, S., Young, P. M. and Traini, D. (2015) Solid lipid microparticles as an approach to drug delivery. Expert. Opin. Drug Deliv. 12, 583-599. https://doi.org/10.1517/17425247.2015.980812
  23. Shelnutt, S. R., Cimino, C. O., Wiggins, P. A., Ronis, M. J. and Badger, T. M. (2002) Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am. J. Clin. Nutr. 76, 588-594. https://doi.org/10.1093/ajcn/76.3.588
  24. Takeuchi, H., Matsui, Y., Yamamoto, H. and Kawashima, Y. (2003) Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J. Control. Release 86, 235-242. https://doi.org/10.1016/S0168-3659(02)00411-X
  25. Tang, J., Xu, N., Ji, H., Liu, H., Wang, Z. and Wu, L. (2011) Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment. Int. J. Nanomedicine 6, 2429-2435.
  26. Tripathi, S., Kushwah, V., Thanki, K. and Jain, S. (2016) Triple antioxidant SNEDDS formulation with enhanced oral bioavailability: Implication of chemoprevention of breast cancer. Nanomedicine 12, 1431-1443. https://doi.org/10.1016/j.nano.2016.03.003
  27. Uner, M. and Yener, G. (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine 2, 289-300.
  28. Yang, Z., Kulkarni, K., Zhu, W. and Hu, M. (2012) Bioavailability and Pharmacokinetics of Genistein: Mechanistic Studies on its ADME. Anticancer Agents Med. Chem. 12, 1264-1280. https://doi.org/10.2174/187152012803833107
  29. Zhang, Y., Song, T. T., Cunnick, J. E., Murphy, P. A. and Hendrich, S. (1999) Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J. Nutr. 129, 399-405. https://doi.org/10.1093/jn/129.2.399

Cited by

  1. Activators against Metabolic and Drug-Induced Oxidative Injury vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/1378175
  2. Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system vol.44, pp.9, 2018, https://doi.org/10.1080/03639045.2018.1483384
  3. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel vol.45, pp.3, 2019, https://doi.org/10.1080/03639045.2018.1542706
  4. Formulation and Characterization of Genistein-loaded Nanostructured Lipid Carriers: Pharmacokinetic, Biodistribution and In vitro Cytotoxicity Studies vol.16, pp.3, 2019, https://doi.org/10.2174/1567201816666181120170137
  5. Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome vol.60, pp.3, 2017, https://doi.org/10.1093/jrr/rrz014
  6. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs vol.15, pp.6, 2017, https://doi.org/10.1080/17425255.2019.1621289
  7. Preparation and Characterization of PEG-PLA Genistein Micelles Using a Modified Emulsion-Evaporation Method vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/3278098
  8. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives vol.20, pp.13, 2020, https://doi.org/10.2174/1568026620666200416085330
  9. Transmucosal Solid Lipid Nanoparticles to Improve Genistein Absorption via Intestinal Lymphatic Transport vol.13, pp.2, 2017, https://doi.org/10.3390/pharmaceutics13020267
  10. Central Composite Design for Formulation and Optimization of Solid Lipid Nanoparticles to Enhance Oral Bioavailability of Acyclovir vol.26, pp.18, 2021, https://doi.org/10.3390/molecules26185432
  11. Oral delivery of solid lipid nanoparticles: underlining the physicochemical characteristics and physiological condition affecting the lipolysis rate vol.18, pp.11, 2017, https://doi.org/10.1080/17425247.2021.1982891