References
- Baek, J. S., Shin, S. C. and Cho, C. W. (2012) Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. Int. J. Pharm. Investig. 42, 279-283. https://doi.org/10.1007/s40005-012-0038-z
- Battistini, F. D., Flores-Martin, J., Olivera, M. E., Genti-Raimondi, S. and Manzo, R. H. (2014) Hyaluronan as drug carrier. The in vitro efficacy and selectivity of Hyaluronan-Doxorubicin complexes to affect the viability of overexpressing CD44 receptor cells. Eur. J. Pharm. Sci. 65, 122-129. https://doi.org/10.1016/j.ejps.2014.09.008
- Danhier, F., Vroman, B., Lecouturier, N., Crokart, N., Pourcelle, V., Freichels, H., Jerôme, C., Marchand-Brynaert, J., Feron, O. and Preat, V. (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J. Control. Release 140, 166-173. https://doi.org/10.1016/j.jconrel.2009.08.011
- Davis, M. E., Chen, Z. G. and Shin, D. M. (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771-782. https://doi.org/10.1038/nrd2614
- Fang, J., Nakamura, H. and Maeda, H. (2011) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136-151. https://doi.org/10.1016/j.addr.2010.04.009
- Journo-Gershfeld, G., Kapp, D., Shamay, Y., Kopeček, J. and David, A. (2012) Hyaluronan oligomers-HPMA copolymer conjugates for targeting paclitaxel to CD44-overexpressing ovarian carcinoma. Pharm. Res. 29, 1121-1133. https://doi.org/10.1007/s11095-012-0672-1
- Kim, J. E. and Park, Y. J. (2016) High paclitaxel-loaded and tumor cell-targeting hyaluronan-coated nanoemulsions. Colloids Surf. B Biointerfaces. [Epub ahead of print].
- Kirtane, A. R., Narayan, P., Liu, G. and Panyam, J. (2016) Polymersurfactant nanoparticles for improving oral bioavailability of doxorubicin. Int. J. Pharm. Investig. [Epub ahead of print].
- Liebmann, J., Cook, J. A. and Mitchell, J. B. (1993) Cremophor EL, solvent for paclitaxel, and toxicity. Lancet 342, 1428.
- Liu, D., Liu, F., Liu, Z., Wang, L. and Zhang, N. (2011a) Tumor specific delivery therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm. 8, 2291-2301. https://doi.org/10.1021/mp200402e
- Liu, D., Liu, Z., Wang, L., Zhang, C. and Zhang, N. (2011b) Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces 85, 262-269. https://doi.org/10.1016/j.colsurfb.2011.02.038
- Liu, P., Situ, J. Q., Li, W. S., Shan, C. L., You, J., Yuan, H., Hu, F. Q. and Du, Y. Z. (2015) High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine 11, 855-866. https://doi.org/10.1016/j.nano.2015.02.002
- Matsubara, Y., Katoh, S., Taniguchi, H., Oka, M., Kadota, J. and Kohno, S. (2000) Expression of CD44 variants in lung cancer and its relationship to hyaluronan binding. J. Int. Med. Res. 28, 78-90. https://doi.org/10.1177/147323000002800203
- Mercê, A. L., Marques Carrera, L. C., Santos Romanholi, L. K. and Lobo Recio, M. A. (2002) Aqueous and solid complexes of iron (III) with hyaluronic acid: potentiometric titrations and infrared spectroscopy studies. J. Inorg. Biochem. 89, 212-218. https://doi.org/10.1016/S0162-0134(01)00422-6
- Mizrahy, S., Raz, S. R., Hasgaard, M., Liu, H., Soffer-Tsur, N., Cohen, K., Dvash, R., Landsman-Milo, D., Bremer, M. G., Moghimi, S. M. and Peer, D. (2011) Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J. Control. Release 156, 231-238. https://doi.org/10.1016/j.jconrel.2011.06.031
- Orr, G. A., Verdier-Pinard, P., McDaid, H. and Horwitz, S. B. (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280-7295. https://doi.org/10.1038/sj.onc.1206934
- Othman, T., Goto, S., Lee, J. B., Taimura, A., Matsumoto, T. and Kosaka, M. (2001) Hyperthermic enhancement of the apoptotic and antiproliferative activities of paclitaxel. Pharmacology 62, 208-212. https://doi.org/10.1159/000056096
- Park, J. H., Cho, H. J., Yoon, H. Y., Yoon, I. S., Ko, S. H., Shim, J. S., Cho, J. H., Park, J. H., Kim, K., Kwon, I. C. and Kim, D. D. (2014) Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J. Control. Release 174, 98-108. https://doi.org/10.1016/j.jconrel.2013.11.016
- Sim, T., Lim, C., Hoang, N. H., Joo, H., Lee, J. W., Kim, D.-w., Lee, E. S., Youn, Y. S., Kim, J. O. and Oh, K. T. (2016) Nanomedicines for oral administration based on diverse nanoplatform. Int. J. Pharm. Investig. 46, 351-362. https://doi.org/10.1007/s40005-016-0255-y
- Singla, A. K., Garg, A. and Aggarwal, D. (2002) Paclitaxel and its formulations. Int. J. Pharm. 235, 179-192. https://doi.org/10.1016/S0378-5173(01)00986-3
- Xin, D., Wang, Y. and Xiang, J. (2010) The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm. Res. 27, 380-389. https://doi.org/10.1007/s11095-009-9997-9
- Xiong, Y., Zhao, Y., Miao, L., Lin, C. M. and Huang, L. (2016) Codelivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J. Control. Release. 244, 63-73. https://doi.org/10.1016/j.jconrel.2016.11.005
- Yang, X. Y., Li, Y. X., Li, M., Zhang, L., Feng, L. X. and Zhang, N. (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 334, 338-345. https://doi.org/10.1016/j.canlet.2012.07.002
- Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y. and Lu, W. (2010) Cyclic RGD conjugated poly (ethylene glycol)-co-poly (lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J. Control. Release 143, 136-142. https://doi.org/10.1016/j.jconrel.2009.12.020
- Zhao, D., Gong, T., Fu, Y., Nie, Y., He, L. L., Liu, J. and Zhang, Z. R. (2008) Lyophilized Cheliensisin A submicron emulsion for intravenous injection: characterization, in vitro and in vivo antitumor effect. Int. J. Pharm. 357, 139-147. https://doi.org/10.1016/j.ijpharm.2008.01.055
- Zhao, P., Wang, H., Yu, M., Cao, S., Zhang, F., Chang, J. and Niu, R. (2010) Paclitaxel-loaded, folic-acid-targeted and TAT-peptideconjugated polymeric liposomes: in vitro and in vivo evaluation. Pharm. Res. 27, 1914-1926. https://doi.org/10.1007/s11095-010-0196-5
- Zhao, P., Wang, H., Yu, M., Liao, Z., Wang, X., Zhang, F., Ji, W., Wu, B., Han, J., Zhang, H., Wang, H., Chang, J. and Niu, R. (2012) Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 81, 248-256. https://doi.org/10.1016/j.ejpb.2012.03.004
Cited by
- Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4 vol.81, pp.9, 2018, https://doi.org/10.1080/15287394.2018.1440186
- Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs vol.10, pp.3, 2018, https://doi.org/10.3390/pharmaceutics10030074
- Current Applications of Nanoemulsions in Cancer Therapeutics vol.9, pp.6, 2019, https://doi.org/10.3390/nano9060821
- Nanocomposites as biomolecules delivery agents in nanomedicine vol.17, pp.None, 2017, https://doi.org/10.1186/s12951-019-0479-x
- CD44-Mediated Methotrexate Delivery by Hyaluronan-Coated Nanoparticles Composed of a Branched Cell-Penetrating Peptide vol.6, pp.1, 2017, https://doi.org/10.1021/acsbiomaterials.9b01724
- Quality by Design Applied Development of Immediate-Release Rabeprazole Sodium Dry-Coated Tablet vol.13, pp.2, 2017, https://doi.org/10.3390/pharmaceutics13020259
- Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review vol.13, pp.12, 2021, https://doi.org/10.3390/pharmaceutics13122120