DOI QR코드

DOI QR Code

Real-Time Compensation of Errors Caused by the Flux Density Non-uniformity for a Magnetically Suspended Sensitive Gyroscope

  • Received : 2017.03.20
  • Accepted : 2017.05.30
  • Published : 2017.06.30

Abstract

Magnetically suspended sensitive gyroscopes (MSSGs) provide an interesting alternative for achieving precious attitude angular measurement. To effectively reduce the measurement error caused by the non-uniformity of the air-gap flux density in a MSSG, this paper proposes a novel compensation method based on measuring and modeling of the air-gap flux density. The angular velocity measurement principle and the structure of the MSSG are described, and then the characteristic of the air-gap flux density has been analyzed in detail. Next, to compensate the flux density distribution error and improve the measurement accuracy of the MSSG, a real-time compensation method based on the online measurement with hall probes is designed. The common issues caused by the non-uniformity of the air-gap flux density can be effectively resolved by the proposed method in high-precision magnetically suspended configurations. Comparative simulation results before and after compensation have verified the effectiveness and superiority of the proposed compensation method.

Keywords

References

  1. B. C. Han, S. Q. Zheng, Z. Wang, and Y. Le, IEEE Trans. Ind. Electron. 62, 7424 (2015). https://doi.org/10.1109/TIE.2015.2459052
  2. P. L. Cui, J. Cui, Q. Yang, and S. Q. Zheng, Math. Probl. Eng. 2015, 1 (2015).
  3. P. L. Cui, S. Li, and C. Peng, IEEE/ASME Trans. Mechatron. 21, 618 (2016).
  4. Y. Ren and J. C. Fang, IEEE Trans. Ind. Electron. 61, 1539 (2014). https://doi.org/10.1109/TIE.2013.2257147
  5. J. C. Fang, Y. Ren, and Y. H. Fan, IEEE Trans. Ind. Electron. 61, 2003 (2014). https://doi.org/10.1109/TIE.2013.2266077
  6. Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, and H. Kameno, J. Mechatronics 19, 1261 (2009). https://doi.org/10.1016/j.mechatronics.2009.08.002
  7. Y. Maruyama, T. Mizuno, M. Takasaki, Y. Ishino, H. Kameno, and A. Kubo, J. Sys. Design Dyna. 3, 954 (2009). https://doi.org/10.1299/jsdd.3.954
  8. T. Akiyama, T. Mizuno, M. Takasaki, Y. Ishino, and K. Obara, Mechatronics 24, 1059 (2014). https://doi.org/10.1016/j.mechatronics.2014.06.004
  9. C. J. Xin, Y. W. Cai, Y. Ren, and Y. H. Fan, J. Magn. 21, 356 (2016). https://doi.org/10.4283/JMAG.2016.21.3.356
  10. S. Park and C. Lee, IEEE/ASME Trans. Mechatron. 10, 618 (2006).
  11. R. G. Thomas and F. L. Alan, IEEE Trans. Control Syst. Technol. 29, 74 (2009). https://doi.org/10.1109/MCS.2009.933488
  12. T. M. Lim and D. S. Zhang, Mechatronics 18, 35 (2008). https://doi.org/10.1016/j.mechatronics.2007.07.007
  13. T. M. Lim and D. S. Zhang, Artif. Organs 30, 347 (2006). https://doi.org/10.1111/j.1525-1594.2006.00224.x
  14. J. Q. Tang, B. Xiang, and C. E. Wang, ISA Trans. 58, 509 (2015). https://doi.org/10.1016/j.isatra.2015.05.011
  15. C. E. Wang and J. Q. Tang, Math. Probl. Eng. 2013, 147 (2013).
  16. B. Xiang and J. Q. Tang, Mechatronics 28, 46 (2015). https://doi.org/10.1016/j.mechatronics.2015.04.008
  17. L. S. Stephens and D. G. Kim, IEEE Trans. Magn. 38, 1764 (2002). https://doi.org/10.1109/TMAG.2002.1017769
  18. A. Johan, O. Jim, and H. Magnus, IEEE Trans. Magn. 50, 1 (2014).