DOI QR코드

DOI QR Code

The Development of Scrubber for F-gas Reduction from Electronic Industry Using Pressure Swing Adsorption Method and Porous Media Combustion Method

압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발

  • 정종국 (글로벌스탠다드테크놀로지) ;
  • 이기용 (글로벌스탠다드테크놀로지) ;
  • 이상곤 (글로벌스탠다드테크놀로지) ;
  • 이은미 (글로벌스탠다드테크놀로지) ;
  • 모선희 (글로벌스탠다드테크놀로지) ;
  • 이대근 (글로벌스탠다드테크놀로지) ;
  • 김승곤 (한국에너지기술연구원)
  • Received : 2016.11.03
  • Accepted : 2016.11.24
  • Published : 2017.06.30

Abstract

The perfluorocompounds (PFCs) emitted from the semiconductor and display manufacture is treated by abatement systems which use various technologies, such as combustion, thermal, plasma, catalyst. However, it is required that the system should overcome their drawbacks with excess energy consumption and low removal efficiency. The new technology using combination of pressure swing adsorption and excess enthalpy combustion for the reduction of PFCs emissions were developed and analyzed its characteristics. PFCs concentration ratio and PFCs loss factor were calculated from measuring concentration of PFCs at the calculated by comparing concentration of PFCs at the combustor's inlet and outlet. There were performance evaluations with various gas flow for comparing energy consumption and removal efficiency with existing equipments. The concentration ratio and the loss factor of PFCs were 1.65, 8.2%, respectively, when the total gas flow of the pressure swing absorption (PSA) inlet was 204 liter per minute (LPM) and $CF_4$ concentration was 1412 ppm. In comparison with existing system at constant condition, $CF_4$ removal efficiency for a porous media combustion (PMC) showed the improvement more than 16% and the consumed energy was also reduced up to approximately 41%. Then, the total gas flow introduced into PMC and $CF_4$ concentration were 91-LPM and 2335 ppm, respectively, and the destruction and removal efficiency of $CF_4$ was about 96% at 19-LPM $CH_4$, and 40-LPM $O_2$.

반도체 및 디스플레이 산업에서 배출되는 과불화합물은 연소, 열, 플라즈마, 촉매 등의 다양한 방법이 적용된 스크러버에 의해 분해 과정을 거친 후 배출되나, 운영 스크러버의 대부분이 과도한 에너지의 사용, 낮은 저감 효율을 보임으로써 이러한 단점의 극복이 요구된다. 압력순환흡착법과 다공성 매체 연소법의 두 가지 기술이 연계된 새로운 형태의 과불화합물 저감 스크러버를 개발하고 특성을 알아보았다. 분해 대상인 $CF_4$의 흡착비와 손실계수는 흡착 컬럼의 입구와 출구에서 농도 측정을 통해 계산하였으며, 연소기의 입구와 출구의 유량과 농도 측정을 통해 처리 효율을 계산하였다. 기존 스크러버와의 에너지 사용량 및 처리효율 비교를 위하여 다양한 유량에 대한 성능 평가가 진행되었다. 1412 ppm, 204 LPM의 $CF_4$가 유입된 흡착 컬럼에서의 흡착비는 1.65였으며, 유입되는 $CF_4$의 손실 계수는 8.2%였다. 이때 연소기로 유입되는 $CF_4$의 유량과 농도는 각각 91 LPM과 2335 ppm이었으며, $CF_4$ 19 LPM, $O_2$ 40 LPM을 사용한 연소 반응시 약 96%의 저감 효율을 나타내었다. 상용 스크러버와의 동일 운전 조건에서의 다공성 매체 연소에서의 $CF_4$ 저감 효율과 전체 에너지 사용 효율 비교시 각각 16%, 41% 이상의 저감 효율 상승과 에너지 절감 효과를 보였다.

Keywords

References

  1. Lee, J. Y., Lee, J. B., Moon, D. M., Souk, J. H., Lee, S. Y., and Kim, J. S., "Evaluation Method on Destruction and Removal Efficiency of Perfluorocompounds from Semiconductor and Display Manufacturing," Bull. Korean Chem. Soc., 28(8), 1383-1388 (2007). https://doi.org/10.5012/bkcs.2007.28.8.1383
  2. Park, Y. K., "Waste Gas Treatment System for Semiconductor Process," Environment Technology Development Business, Report the Ministry of Environment (2004).
  3. Greenhouse Gas Inventory and Research Center, " National Greenhouse Gas Inventory Report of Korea," (2014).
  4. Chung, J. K., Lee, K. Y., and Kim, D. H. "Device for Purifying Exhausted Gas from Chemical Vapor Deposition," Korea Patent No. 10-1617691 (2016).
  5. Han, S. H., Park, H. W., Kim, T. H., and Park, D. W., "Large Scale Treatment of perfluorocompounds Using a Thermal Plasma Scrubber," Clean Technol., 17(3), 250-258, (2011). https://doi.org/10.7464/KSCT.2011.17.3.250
  6. Lee, Y. C., and Jeon, J. K., "A Study on Catalytic Process in Pilot Plant for Abatement of PFC Emission," Clean Technol., 18(2), 216-220 (2012). https://doi.org/10.7464/ksct.2012.18.2.216
  7. Jeong, S. H., Han, J. H., Lee, S. J., and Lee, M. J., "Studies for Discomposing Characteristic of PFCs Fluid with the Plasma Torch," 30th KOSCO Symposium, 141-146 (2008).
  8. Ryu, J. Y., Son, Y. I., and Jang, S. H., "A Study on Decomposition and By-products of PFCs using Electron-beam," J. Korea Soc. Waste Manage., 32(1), 1-6 (2015). https://doi.org/10.9786/kswm.2015.32.1.1
  9. Kim, S. G., Lee, D. K., and Noh, D. S., "An Experimental Study of Image Dilution Effects on Image-Image Flame Stabilization Characteristics in a Two-section Porous Medium," Appl. Therm. Eng., 103, 1390-1397 (2016). https://doi.org/10.1016/j.applthermaleng.2016.05.038
  10. Qin, L., Han, J., Wang, G., Kim, H. J., and Kawaguchi, I., "Highly Efficient Decomposition of $CF_4$ Gases by Combustion," Science Research, Conference on Environmental Pollution and Public Health, 126-130 (2010).
  11. Chung, J. K., "Process Equipment Emission Control Technology," 3th Forums on Cleanroom Contamination Control for Next Generation, Korea Air Cleaning Association (2016).
  12. National Institute of Environmental Research, "Guideline for Measurement Method of Destruction and Removal Efficiency of Greenhouse Gas Abatement System Using at Semiconductor and Display Manufacturing," (2015).
  13. Lee, D. K., Kim, S. G., Noh, D. S., Ko, C. B., and Guahk, Y. T., "Energy-saving Combustion Apparatus for Incineration Disposal of Non-degradable Noxious Gases, and Operation Method Thereof," PCT/KR2015/002964 (2015).