DOI QR코드

DOI QR Code

국내산 땅콩의 일반 품종과 고올레산 품종에 대한 지용성 영양성분과 산화안정성 비교

Comparison of lipid constituents and oxidative properties between normal and high-oleic peanuts grown in Korea

  • 임호정 (경남과학기술대학교 식품과학부) ;
  • 김미소 (경남과학기술대학교 식품과학부) ;
  • 김다솜 (경남과학기술대학교 식품과학부) ;
  • 김회성 (경남과학기술대학교 식품과학부) ;
  • 배석복 (국립식량과학원 남부작물부) ;
  • 김재겸 (알칸사 주립대학 인간환경과학과) ;
  • 신의철 (경남과학기술대학교 식품과학부)
  • Lim, Ho-Jeong (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Kim, Mi-So (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Kim, Da-Som (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Kim, Hoe-Sung (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Pae, Suk-Bok (Department of Southern Area Crop Science, NICS, RDA) ;
  • Kim, Jae Kyeom (School of Human Environmental Sciences, University of Arkansas) ;
  • Shin, Eui-Cheol (Department of Food Science, Gyeongnam National University of Science and Technology)
  • 투고 : 2017.01.10
  • 심사 : 2017.03.02
  • 발행 : 2017.06.30

초록

본 연구는 가열 산화에 따른 일반 및 고올레산 땅콩 유지의 화학적인 특성 변화를 측정하였다. 땅콩 유지는 용매추출법을 이용하여 추출하였으며 $80^{\circ}C$에서 25일간 가열 산화시켜 지방산 조성, 토코페롤, 식물스테롤 및 산화안정성 변화를 측정하였다. 일반 및 고올레산 유지의 주요 지방산은 올레인산과 리놀레산으로 이들의 비율(O/L)은 일반 품종 2.75, 고올레인산 품종 5.23으로 나타났다. 저장기간동안 가열산화에 의해 리놀레산이 파괴되어 단일불포화지방산 및 포화지방산의 비율이 상대적으로 증가하였으며 일반 품종이 고올레산에 비해 리놀레산의 감소량이 유의적(p<0.05)으로 높은 것으로 나타났다. 산화안정성을 나타내는 과산화물가와 산가를 측정한 결과 두 가지 유지 모두 증가하는 것으로 일반 품종은 과산화물가와 산가가 급격히 증가하는 경향을 보였고, 고올레산 품종은 상대적으로 다소 완만하게 증가하였다. 가열산화가 진행됨에 따라 토코페롤과 식물스테롤은 모두 감소하는 경향을 보였지만, 일반품종에서 감소되는 속도가 더 빠르게 나타났다. 고올레산 품종의 경우 높은 올레인산 비율과 낮은 리놀레산의 비율로 인해 일반 품종보다 우수한 산화안정성을 보였으며, 지방산 조성뿐 만 아니라 토코페롤과 식물스테롤의 함량 변화 역시 고올레산 품종에서 더 높은 잔존율을 확인할 수 있었다.

Generally, peanuts are classified as high-fat foods as they possess high proportions of fatty acids. This study compared lipid constituents and properties between normal and high-oleic peanuts. Gas Chromatography-Flame Ionization Detector (GC-FID) analyses revealed that the fatty acid levels were significantly different between the normal and higholeic peanuts (p<0.05). Eight fatty acids were identified in the samples, including palmitic (C16:0), stearic (C18:0), oleic (C18:1, n9), linoleic (C18:2, n6), arachidic (C20:0), gondoic (C20:1, n9), behenic (C22:0), and lignoceric (C24:0) acids. Four tocopherol homologs were detected, and ${\alpha}$- and ${\gamma}$-tocopherols were the predominant ones. Tocopherols were rapidly decomposed during 25 day storage at $80^{\circ}C$. The main identified phytosterols were beta-sitosterol, ${\Delta}^5$-avenasterol, campesterol, and stigmasterol. Acid and peroxide values indicated that high-oleic peanuts have better oxidative stability than normal peanuts. These results can serve as the basis for the use of peanuts in the food industry.

키워드

참고문헌

  1. Woodroof JG. Peanuts: Production, Processing, Products. 3rd ed. AVI Pub. Co., Westport, CT, USA. pp. 1-50 (1983)
  2. Woodroof JG. Peanuts: Production, Processing, Products. 2nd ed. AVI Pub. Co., Westport, CT, USA. pp. 12-38 (1973)
  3. Park CH, Park HW. Review of the studies on the qualities in peanut. Korean J. Crop. Sci. 47: 163-174 (2002)
  4. Sabat J, Oda K, Ros E. Nut consumption and blood lipid levels: a pooled analysis of 25 intervention trials. Arch. Intern. Med. 170: 821-827 (2010) https://doi.org/10.1001/archinternmed.2010.79
  5. Ostlund RE, Racette SB, Stenson WF. Effects of trace components of dietary fat on cholesterol metabolism: phytosterols, oxysterols, and squalene. Nutr. Rev. 60: 349-359 (2002) https://doi.org/10.1301/00296640260385793
  6. Ricciarelli R, Zingg JM, Azzi A. Vitamin E: Protective role of a Janus molecule. FASEB J. 15: 2314-2325 (2001) https://doi.org/10.1096/fj.01-0258rev
  7. Nawar WW. Lipids. pp. 225-320. In: Food Chemistry. Fennema OR (ed). Marcel Dekker, New York, NY, USA (1998)
  8. Frankel EN. Chemistry of autooxidation: Mechanism, products and flavor significance. pp. 1-37. In: Flavor Chemistry of Fats and Oils. Min DB, Smouse TH (eds). AOCS Press, Champaign, IL, USA (1985)
  9. Min DB. Lipid oxidation of edible oil. pp. 283-296. In: Food Lipids. Akoh K, Min DB (eds). Marcel Dekker, New York, NY, USA (1998)
  10. AOAC. Official Methods of Analysis. 16th ed. Method 932.06, 925.09, and 923.03. Association of Official Analytical Communities, Arlington, VA, USA (1995)
  11. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917 (1959) https://doi.org/10.1139/o59-099
  12. KFDA. Korean food standards codex: Nitrogen to protein conversion factor. Korea Food and Drug Administration, Seoul, Korea (2011)
  13. AOCS. AOCS official and tentative methods. Official Method Ce 2-66. American Oil Chemists' Society, Chicago, IL, USA (1990)
  14. Shin EC. Nutritional and functional components in peanuts grown in the United States-fatty acids, vitamin E, and phytosterols. PhD thesis, University of Georgia, Athens, GA, USA (2010)
  15. Eitenmiller RR, Lee JS. Vitamin E. Marcel Dekker Inc., New-York, NY, USA. pp. 323-424 (2004)
  16. AOCS. AOCS official and tentative methods. Official Method Cd 30-63, Cd 8-53. American Oil Chemists' Society, Chicago, IL, USA (1990)
  17. Lim HJ. Lipid components and its physical and chemical properties in peanut cultivars. MS thesis, Gyeongnam National University of Science and Technology, Jinju, Korea (2014)
  18. Korea Food and Drug Administration. Nutritional database system. Available from: http://www.foodnara.go.kr/kisna/index.do. Accessed Jan. 4, 2017.
  19. Ray TK, Holly SP, Knauft DA, Abbott AG, Powell GL. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of ${\Delta}^{12}$-desaturase activity. Plant Sci. 91: 15-21 (1993) https://doi.org/10.1016/0168-9452(93)90184-2
  20. White PJ. Methods for measuring changes in deep-fat frying oils. Food Technol. 45: 75-80 (1991)
  21. Lee JW, Park JW. Changes of fatty acid composition and oxidation stability of edible oils with frying number of French fried potatoes. J. Korean Soc. Food Sci. Nutr. 39: 1011-1017 (2010) https://doi.org/10.3746/jkfn.2010.39.7.1011
  22. Lee KS, Kim GH, Kim HH, Seong BJ, Kim SI, Han SH, Lee SS, Lee GH. Physicochemical properties of frying ginseng and oils derived from deep-frying ginseng. J. Korean Soc. Food Sci. Nutr. 42: 941-947 (2013) https://doi.org/10.3746/jkfn.2013.42.6.941
  23. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70: 1009-1015 (1999) https://doi.org/10.1093/ajcn/70.6.1009
  24. Groff JL, Gropper SS, Hunt SM. Lipid. pp. 113-146. In: Advanced Nutrition and Human Metabolism. Gropper SS, Smith JL (eds). West Publishing, Minneapolis, St. Paul, MN, USA (1996)
  25. Kim HJ, Lee MY, Min DB. Singlet oxygen oxidation rates of ${\alpha}$-, ${\gamma}$-, and ${\delta}$-tocopherols. J. Food Sci. 71: 465-468 (2006) https://doi.org/10.1111/j.1750-3841.2006.00155.x
  26. Jang SH, Lee SM, Jeong HS, Lee JS. Oxidative stability of grape seed oils under different roasting conditions. J. Korean Soc. Food Sci. Nutr. 39: 1715-1718 (2010) https://doi.org/10.3746/jkfn.2010.39.11.1715
  27. Barrera-Arellano D, Ruiz-Mndez V, Velasco J, Mrquez-Ruiz G, Dobarganes C. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. J. Sci. Food Agr. 82: 1696-1702 (2002) https://doi.org/10.1002/jsfa.1245
  28. Soupas L, Huikko L, Lampi AM, Piironen V. Oxidative stability of phytosterols in some food applications. Eur. Food Res. Technol. 222: 266-273 (2006) https://doi.org/10.1007/s00217-005-0031-0
  29. Jung MY, Bae DH, Rhee KC. Changes in phytosterol contents in cottonseed oil and canola oil during refining and/or heating. Food Sci. Biotech. 1: 26-30 (1992)
  30. Ahmet K, Ali R, Tekin, Mehmet D. Oxidative stability of sunflower and olive oils. LWT. 26: 464-468 (1993) https://doi.org/10.1006/fstl.1993.1091
  31. Lee SJ, Choi SY, Shin JH, Kim SH, Lim HC, Sung NJ. Fatty acid composition and oxidative stability of citron seed oils. J. Life Sci. 16: 427-432 (2006) https://doi.org/10.5352/JLS.2006.16.3.427