DOI QR코드

DOI QR Code

Computational Study of Intermetallic Reaction Propagation in Nanoscale Boron/Titanium Metallic Multilayers

보론/티타늄 나노박막다층 내 이종금속간 화학반응 전파특성 해석연구

  • Kim, Kyoungjin (Department of Mechanical System Engineering, Kumoh National Institute of Technology) ;
  • Park, Joong-Youn (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
  • Received : 2017.01.12
  • Accepted : 2017.02.22
  • Published : 2017.06.01

Abstract

The analytical modeling has been established on the self-propagation of intermetallic reaction in the spanwise direction of highly reactive boron and titanium nanoscale multilayers. Assuming that the reaction obeys Arrhenius kinetics, two-dimensional computations are carried out for heat and atomic species diffusion with exothermic reaction model in order to simulate the self-propagation of intermetallic reaction. The effects of bimetallic layer thickness and thickness ratio on the reaction propagation speed are tested and discussed in addition to the assessment of pre-mixing zone effects.

빠른 반응성 및 자체전파특성을 가지는 보론/티타늄 나노 다층박막구조를 대상으로 박막층 수평방향으로의 이종금속간 화학반응 및 화염 전파현상 해석 모델링을 수립하였다. 이종금속간 화학반응은 Arrhenius 반응식을 가정하여 모델링하였으며, 열 및 화학종 확산, 발열 화학반응에 따른 화염 자체전파 현상에 대하여 2차원적 전산해석을 수행하였다. 보론 및 티타늄 박막층의 두께 및 두께비 등 나노구조 형상의 영향을 비롯하여 접촉층 예혼합 정도가 화염 자체전파속도에 미치는 영향을 분석하였다.

Keywords

References

  1. Dreizin, E.L., "Metal-Based Reactive Nanomaterials," Progress in Energy and Combustion Science, Vol. 35, No. 2, pp. 141-167, 2009. https://doi.org/10.1016/j.pecs.2008.09.001
  2. Armstrong, R.W., Baschung, B., Booth, D.W. and Samirant, M., "Enhanced Propellant Combustion with Nanoparticles," Nano Letters, Vol. 3, pp. 253-255, 2003. https://doi.org/10.1021/nl025905k
  3. Yetter, R.A, Risha, G.A. and Son S.F., "Metal Particle Combustion and Nanotechnology," Proceedings of the Combustion Institute, Vol. 32, pp. 1819-1838, 2009.
  4. Bockmon, B.S., Pantoya, M.L., Son, S.F., Asay, B.W. and Mang, J.T., "Combustion Velocities and Propagation Mechanisms of Metastable Interstitial Composites," Journal of Applied Physics, Vol. 98, pp. 064903-1-7, 2005. https://doi.org/10.1063/1.2058175
  5. Wilson, D.E. and Kim, K., "A Simplified Model for the Combustion of Al/$MoO_3$ Nanocomposite Thermites," 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, A.L., U.S.A., AIAA 2003-4563, July 2003.
  6. Son, S.F., Asay, B.W., Foley, T.J., Yetter, R.A., Wu, M.H. and Risha, G.A., "Combustion of Nanoscale Al/$MoO_3$ Thermite in Microchannels," Journal of Propulsion and Power, Vol. 23, pp. 715-721, 2007. https://doi.org/10.2514/1.26090
  7. Adams, D.P., "Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review," Thin Film Solids, Vol. 576, pp. 98-128, 2015. https://doi.org/10.1016/j.tsf.2014.09.042
  8. Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E. and Weihs, T.P., "Effect of Intermixing on Self-Propagating Exothermic Reactions in Al/Ni Nano-Laminate Foils," Journal of Applied Physics, Vol. 87, pp. 1255-1263, 2002.
  9. Besnoin, E., Cerutti, S., Knio, O.M. and Weihs, T.P, "Effect of Reactant and Product Melting on Self-Propagating Reactions in Multilayer Foils," Journal of Applied Physics, Vol. 92, No. 9, pp. 5474-5481, 2002. https://doi.org/10.1063/1.1509840
  10. Gachon, J.C., Rogachev, A.S., Grigoryan, H.E., Illarionova, E.V., Kuntz, J.J., Kovalev, D.Yu., Nosyrev, A.N., Sachkova, N.V. and Tsygankov, P.A., "On the Mechanism of Heterogeneous Reaction and Phase Formation in Ti/Al Multilayer Nanofilms," Acta Materialia, Vol. 53, pp. 1225-1231, 2005. https://doi.org/10.1016/j.actamat.2004.11.016
  11. Baginski, T.A., Taliaferro, S.L. and Fahey W.D., "Novel Electro-Explosive Device Incorporating a Reactive Laminated Metallic Bridge," Journal of Propulsion and Power, Vol. 17, No. 1, pp. 184-189, 2001. https://doi.org/10.2514/2.5726
  12. Tanaka, S., Kondo, K., Habu, H., Itoh, A., Watanabe, M., Hori, K. and Esashi, M., "Test of B/Ti Multilayer Reactive Igniters for a Micro Solid Rocket Array Thruster," Sensors and Actuators A: Physical, Vol. 144, pp. 361-366, 2008. https://doi.org/10.1016/j.sna.2008.02.015
  13. Kim, K., "Numerical Modeling of Thermal Characteristics in a MEMS-Based Micro-Initiator with Intermetallic Thin Film Layers," Proceedings of First Thermal and Fluids Engineering Summer Conference, New York, N.Y., U.S.A., Aug. 2015.
  14. Choi, J. and Kim, K., "Numerical Investigations on Flame Propagation in Thin-Film Initiator with Intermetallic Multilayers," Proceedings of 2016 KSPE Spring Conference, Jeju, Korea, May 2016.
  15. Yan, Y.C., Shi, W., Jiang, H.C., Cai, X.Y., Deng, X.W., Xiong J. and Zhang, W.L., "Characteristics of the Energetic Igniters Through Integrating B/Ti Nano-Multilayers on TaN Film Bridge," Nanoscale Research Letters, Vol. 10, pp. 244-1-6, 2015. https://doi.org/10.1186/s11671-015-0934-z
  16. Kim, K., "Analysis of Self-Propagating Intermetallic Reaction in Nanoscale Multilayers of Binary Metals," Metals and Materials International, Vol. 23, No. 2, pp. 326-335, 2017. https://doi.org/10.1007/s12540-017-6379-4
  17. Pacheco, M.M., "Self-Sustained High-Temperature Reactions: Initiation, Propagation and Synthesis," Ph.D. Dissertation, Delft University of Technology, 2007.
  18. Tikekar, N., "Novel Double-Layer Titanium Boride Coating on CP-Ti and Ti-6Al-4V Alloy: Kinetics of Boron Diffusion and Coating Morphologies," Ph.D. Dissertation, The University of Utah, 2007.