DOI QR코드

DOI QR Code

Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability

  • Lee, Jong-Han (Department of Civil Engineering, Daegu University) ;
  • Park, Yong Myung (Department of Civil Engineering, Pusan National University) ;
  • Jung, Chi-Young (Seismic Simulation Test Center, Pusan National University) ;
  • Kim, Jae-Bong (Seismic Simulation Test Center, Pusan National University)
  • Received : 2016.09.15
  • Accepted : 2017.03.23
  • Published : 2017.06.30

Abstract

Tests of the lateral and torsional stability are quite sensitive to the experimental conditions, such as support conditions and loading system. Controlling all of these conditions in a full-size test is a very challenging task. Therefore, in this paper, an experimental measurement method that can control the experimental conditions using a small-scale model was proposed to evaluate the lateral and torsional stability of beams. For this, a loading system was provided to maintain the vertical direction of the load applied to the beam, and a support frame was produced to satisfy the in-plane and out-of-plane support conditions. The experimental method using a small-scale model was applied successively to the lateral and torsional behavior and stability of I-shaped beams. The proposed experimental methods, which effectively accommodate the changes in the geometry and length of the beam, could contribute to further experimental studies regarding the lateral and torsional stability of flexural members.

Keywords

References

  1. Brsoum, R. S., & Gallagher, R. H. (1970). Finite element analysis of torsional and torsional flexural stability problems. International Journal for Numerical Methods in Engineering, 2(3), 335-352. https://doi.org/10.1002/nme.1620020304
  2. Chen, W. F., & Lui, E. M. (1987). Structural Stability: Theory and Implementation (pp. 317-333). New York: Elsevier.
  3. Darilmaz, K. (2011). An assumed stress hybrid finite element for buckling analysis. Mathematical and Computational Applications, 16(2), 690-701. https://doi.org/10.3390/mca16030690
  4. DIANA. (2016). TNO DIANA-finite element analysis user's manual release 10.1. Delft, The Netherlands: TNO.
  5. Fafard, M., Beaulieu, D., & Dhatt, G. (1987). Buckling of thin-walled members by finite elements. Computers & Structures, 25(2), 183-190. https://doi.org/10.1016/0045-7949(87)90141-6
  6. Hansell, W., & Winter, G. (1959). Lateral stability of reinforced concrete beams. ACI JouRNAL Proceedings, 56(3), 193-214.
  7. Helwig, T. A., Wang, L., Deaver, J., & Romero, C. (2005). Cross-frame and diaphragm behavior in bridges with skewed supports: Summary. Project Summary Report 0-1772. Austin, TX: Texas Department of Transportation.
  8. Horne, M. R. (1954). The flexural torsional buckling of members of symmetric I-section under combined thrust and unequal terminal moments. The Quarterly Journal of Mechanics and Applied Mathematics, 7(4), 410-426. https://doi.org/10.1093/qjmam/7.4.410
  9. Hou, J., & Song, L. (2016). Progressive collapse resistance of RC frames under a side column removal scenario: the mechanism explained. International Journal of Concrete Structures and Materials, 10(2), 237-242. https://doi.org/10.1007/s40069-016-0134-y
  10. Hurff, J. (2010). Stability of precast prestressed bridge girders considering imperfections and thermal effects. PhD thesis, Georgia Institute of Technology, Atlanta, GA.
  11. Hurff, J. B., & Kahn, L. F. (2012). Lateral-torsional buckling of structural concrete beams: experimental and analytical study. ASCE Journal of Structural Engineering, 138, 1138-1148. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000542
  12. Jensen, L. M. (1978). Buckling of reinforced concrete beams. Dissertation, Engineering Academy of Denmark, Copenhagen, Denmark.
  13. Kalkan, I. (2009). Lateral torsional buckling of rectangular reinforced concrete beams. PhD thesis, Georgia Institute of Technology, Atlanta, GA.
  14. Kalkan, I. (2014). Lateral torsional buckling of rectangular reinforced concrete beams. ACI Structural Journal, 111, 71-81.
  15. Kalkan, I., & Hurff, J. B. (2012). Experimental techniques for lateral stability testing of beams. Experimental Techniques, 39, 1-6.
  16. Kim, S. J., Kim, J. H., Yi, S. T., Noor, N. B., & Kim, S. C. (2016). Structural performance evaluation of a precast PSC curved girder bridge constructed using multi-tasking formwork. International Journal of Concrete Structures and Materials, 10(Suppl. 3), 1-17.
  17. Kirby, P. A., & Nethercot, D. A. (1997). Design for structural stability. Suffolk: Granada Publishing.
  18. Konig, G., & Pauli, W. (1990). Ergebnisse von sechs Kippversuchen an schlanken Fertigteiltragern aus Stahlbeton und Spannbeton (Results of six buckling tests on slender prefabricated girders made of reinforced concrete and prestressed concrete). Beton-und Stahlbetonbau, 85(10), 253-258. (in German). https://doi.org/10.1002/best.199000330
  19. Lee, J. H. (2012a). Behavior of precast prestressed concrete bridge girders involving thermal effects and initial imperfections during construction. Engineering Structures, 42, 1-8. https://doi.org/10.1016/j.engstruct.2012.04.003
  20. Lee, J. H. (2012b). Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders. ASCE Journal of Bridge Engineering, 17(3), 547-556. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000277
  21. Lee, J. H., Kalkan, I., Lee, J. J., & Cheung, J. H. (2016). Rollover instability of precast girders subjected to wind load. Mag. Conc. Res., 69(2), 68-83.
  22. Li, J. Z., Hung, K. C., & Cen, Z. Z. (2002). Shell element of relative degree of freedom and its application on buckling analysis of thin-walled structures. Thin-Walled Structures, 40, 865-876. https://doi.org/10.1016/S0263-8231(02)00027-7
  23. Massey, C. (1967). Lateral instability of reinforced concrete beams under uniform bending moments. ACI Journal Proceedings, 64(3), 164-172.
  24. Nethercot, D. A., & Rockey, K. C. (1971). A unified approach to the elastic lateral buckling of beams. The Structural Engineer, 49(7), 321-330.
  25. Oesterle, R. G., Sheehan, M. J., Lotfi, H. R., Corley, W. G., & Roller, J. J. (2007). Investigation of red mountain freeway bridge girder collapse. CTL Group project no. 262291 final report. Phoenix: Arizona Department of Transportation.
  26. Petrone, F., Shan, L., & Kunnath, S. K. (2016). Modeling of RC frame buildings for progressive collapse analysis. International Journal of Concrete Structures and Materials, 10(1), 1-13. https://doi.org/10.1007/s40069-016-0126-y
  27. Ramin, K., & Fereidoonfar, M. (2015). Finite element modeling and nonlinear analysis for seismic assessment of off-diagonal steel braced RC frame. International Journal of Concrete Structures and Materials, 9(1), 89-118. https://doi.org/10.1007/s40069-014-0089-9
  28. Rengarajan, G., Aminpour, M. A., & Knight, N. F. (1995). Improved assumed-stress hybrid shell element with drilling degrees of freedom for linear stress, buckling and free vibration analyses. International Journal for Numerical Methods in Engineering, 28(11), 1917-1943.
  29. Revathi, P., & Menon, D. (2007a). Estimation of critical buckling moments in slender reinforced concrete beams. ACI Structural Journal, 103(2), 296-303.
  30. Revathi, P., & Menon, D. (2007b). Slenderness effects in reinforced concrete beams. ACI Structural Journal, 104(4), 412-419.
  31. Salvadori, M. C. (1955). Lateral buckling of I-beams. ASCE Transactions, 120, 1165-1177.
  32. Sant, J. K., & Bletzacker, R. W. (1961). Experimental study of lateral stability of reinforced concrete beams. ACI Journal Proceedings, 58(6), 713-736.
  33. Siev, A. (1960). The lateral buckling of slender reinforced concrete beams. Magazine of Concrete Research, 12(36), 155-164. https://doi.org/10.1680/macr.1960.12.36.155
  34. Srikar, G., Anand, G., & Suriya, S. (2016). Prakash, A study on residual compression behavior of structural fiber reinforced concrete exposed to moderate temperature using digital image correlation. International Journal of Concrete Structures and Materials, 10(1), 75-85. https://doi.org/10.1007/s40069-016-0127-x
  35. Stoddard, W. P. (1997). Lateral-torsional buckling behavior of polymer composite I-shaped members. PhD thesis, Georgia Institute of Technology, Atlanta, GA.
  36. Talbot, M., & Dhatt, G. (1987). Three discrete Kirchhoff elements for shell analysis with large geometrical non-linearities and bifurcations. Engineering with Computers, 4, 15-22. https://doi.org/10.1108/eb023679
  37. Timoshenko, S. P. (1956). Strength of Materials: Part II (3rd ed.). Princeton: Van Nostrand Co.
  38. Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability (2nd ed.). New York: McGraw-Hill.
  39. Yarimci, E., Yura, J. A., & Lu, L. W. (1967). Techniques for testing structures permitted to sway. Experimental Mechanics, 7(8), 321-331. https://doi.org/10.1007/BF02326237
  40. Yura, J. A., & Phillips, B.A. (1992). Bracing requirements for elastic steel beams. Research Report 1239-1. Austin, TX: Center for Transportation Research, The University of Texas.
  41. Zhao, X. L., Hancock, G. J., & Trahair, N. S. (1994). Lateral buckling tests of cold-formed RHS beams. Research Report R699. Camperdown: School of Civil and Mining Engineering, The University of Sydney.
  42. Zhao, X. L., Hancock, G. J., & Trahair, N. S. (1995). Lateral buckling tests of cold-formed RHS beams. ASCE Journal of Structural Engineering, 121(11), 1565-1573. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1565)
  43. Zureick, A. H., Kahn, L. F., & Will, K. M. (2005). Stability of precast prestressed concrete bridge girders considering sweep and thermal effects. GDOT Project No. RP 05-15 Research Proposal. Atlanta, GA: Georgia Department of Transportation, 2005.

Cited by

  1. Vision-based multipoint measurement systems for structural in-plane and out-of-plane movements including twisting rotation vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.563
  2. 비부착 긴장력이 거더의 횡비틀림 안정성에 미치는 영향 vol.22, pp.3, 2017, https://doi.org/10.11112/jksmi.2018.22.3.008
  3. Experimental Verification of Modal Identification of a High-rise Building Using Independent Component Analysis vol.13, pp.1, 2017, https://doi.org/10.1186/s40069-018-0319-7
  4. Effects of prestressing force on natural frequency of prestressed concrete beams considering self-weight vol.74, pp.4, 2017, https://doi.org/10.12989/sem.2020.74.4.495