References
- 544.1R-96. (2006). Report on fiber reinforced concrete. Farmington Hills, MI: American Concrete Institute.
- 544.8R-16. (2016). Report on indirect method to obtain stress-strain response of fiber-reinforced concrete (FRC), ACI Committee 544 ACI 544.8R. Farmington Hills, MI: American Concrete Institute.
- Abdallah, S., Fan, M., Zhou, X., & Le Geyt, S. (2016). Anchorage effects of various steel fibre architectures for concrete reinforcement. International Journal of Concrete Structures and Materials, 10(3), 325-335. https://doi.org/10.1007/s40069-016-0148-5
- Adjrad, A., Bouafia, Y., Kachi, M. S., & Ghazi, F. (2016). Prediction of the rupture of circular sections of reinforced concrete and fiber reinforced concrete. International Journal of Concrete Structures and Materials, 10(3), 373-381. https://doi.org/10.1007/s40069-016-0137-8
- Ali-Ahmad, M., Subramaniam, K., & Ghosn, M. (2006). Experimental investigation and fracture analysis of debonding between concrete and FRP sheets. Journal of engineering mechanics, 132(9), 914-923. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(914)
- Armelin, H. S., & Banthia, N. (1997). Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Materials Journal, 94, 18-31.
- Barros, J. A., & Figueiras, J. A. (1999). Flexural behavior of SFRC: Testing and modeling. Journal of Materials in Civil Engineering, 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
- Bruck, H. A., McNeill, S. R., Sutton, M. A., & Peters, W. H. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 29(3), 261-267. https://doi.org/10.1007/BF02321405
- Carloni, C., & Subramaniam, K. V. (2010). Direct determination of cohesive stress transfer during debonding of FRP from concrete. Composite Structures, 93(1), 184-192. https://doi.org/10.1016/j.compstruct.2010.05.024
- Carloni, C., & Subramaniam, K. V. (2013). Investigation of subcritical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis. Composites Part B Engineering, 51, 35-43. https://doi.org/10.1016/j.compositesb.2013.02.015
- Carloni, C., Subramaniam, K. V., Savoia, M., & Mazzotti, C. (2012). Experimental determination of FRP-concrete cohesive interface properties under fatigue loading. Composite Structures, 94(4), 1288-1296. https://doi.org/10.1016/j.compstruct.2011.10.026
- Di Prisco, M., Plizzari, G., & Vandewalle, L. (2009). Fibre reinforced concrete: new design perspectives. Materials and Structures, 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4
- EN 14651:2005 (E). (2005). Test method for metallic fibre concrete. Measuring the flxural tensile strength (limit of proportionality (LOP), residual).
- Gettu, R., Gardner, D. R., Saldivar, H., & Barragan, B. E. (2005). Study of the distribution and orientation of fibers in SFRC specimens. Materials and Structures, 38(1), 31-37. https://doi.org/10.1007/BF02480572
- Gopalaratnam, V. S., & Gettu, R. (1995). On the characterization of flexural toughness in fiber reinforced concretes. Cement & Concrete Composites, 17(3), 239-254. https://doi.org/10.1016/0958-9465(95)99506-O
- Gopalaratnam, V. S., Shah, S. P., Batson, G., Criswell, M., Ramakishnan, V., & Wecharatana, M. (1991). Fracture toughness of fiber reinforced concrete. Materials Journal, 88(4), 339-353.
- Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
- IS 1727. (1967). Methods of test for pozzolanic materials [CED 2: Civil Engineering], Bureau of Indian Standards, New Delhi, India.
- IS 3812-1. (2003). Specification for pulverized fuel ash, part 1: For use as pozzolana in cement, cement mortar and concrete [CED 2: Cement and concrete], Bureau of Indian Standards, New Delhi, India.
- Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7(4), 303-317. https://doi.org/10.1007/s40069-013-0059-7
- Laranjeira, F., Aguado, A., Molins, C., Grunewald, S., Walraven, J., & Cavalaro, S. (2012). Framework to predict the orientation of fibers in FRC: A novel philosophy. Cement and Concrete Research, 42(6), 752-768. https://doi.org/10.1016/j.cemconres.2012.02.013
- Michels, J., Christen, R., & Waldmann, D. (2013). Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete. Engineering Fracture Mechanics, 98, 326-349. https://doi.org/10.1016/j.engfracmech.2012.11.004
- Olesen, J. F. (2001). Fictitious crack propagation in fiber-reinforced concrete beams. Journal of Engineering Mechanics, 127(3), 272-280. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(272)
- Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science & Technology, 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001
- Robins, P., Austin, S., Chandler, J., & Jones, P. (2001). Flexural strain and crack width measurement of steel-fibre-reinforced concrete by optical grid and electrical gauge methods. Cement and Concrete Research, 31(5), 719-729. https://doi.org/10.1016/S0008-8846(01)00465-3
- Schreier, H. W., & Sutton, M. A. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, 42(3), 303-310. https://doi.org/10.1007/BF02410987
- Shah, S. P., & Ouyang, C. (1991). Mechanical behavior of fiber-reinforced cement-based composites. Journal of the American Ceramic Society, 74(11), 2727-2953. https://doi.org/10.1111/j.1151-2916.1991.tb06836.x
- Sorensen, C., Berge, E., & Nikolaisen, E. B. (2014). Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International Journal of Concrete Structures and Materials, 8(4), 279-287. https://doi.org/10.1007/s40069-014-0083-2
- Stang, H., & Olesen, J. F. (1998). On the interpretation of bending tests on FRC-materials. In H. Mihashi & K. Rokugo (Eds.), Fracture Mechanics of Concrete Structures (Vol. 1). Freiburg: Aedificatio Publishers.
- Subramaniam, K. V., Carloni, C., & Nobile, L. (2007). Width effect in the interface fracture during shear debonding of FRP sheets from concrete. Engineering Fracture Mechanics, 74(4), 578-594. https://doi.org/10.1016/j.engfracmech.2006.09.002
- Subramaniam, K. V., Suraj, N., & Sahith, G. (2015). "Investigation of crack propagation in macro-synthetic fiber reinforced concrete." Proc., 5th International. Conf. on Construction Materials: Performance, Innovations and Structural Implications, 19-21 Aug.,Whistler.
- Sutton, M. A., McNeill, S. R., Jang, J., & Babai, M. (1988). Effects of subpixel image restoration on digital correlation error estimates. Optical Engineering, 27(10), 271070.
- Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133-139. https://doi.org/10.1016/0262-8856(83)90064-1
- Tadepalli, P. R., Dhonde, H. B., Mo, Y. L., & Hsu, T. T. (2015). Shear strength of prestressed steel fiber concrete I-beams. International Journal of Concrete Structures and Materials, 9(3), 267-281. https://doi.org/10.1007/s40069-015-0109-4
- UNI 11039-2:2003. (2003). Concrete reinforced with steel fibers-test method for the determination of early crack strength and ductility indexes.
Cited by
- Influence of Steel Fibers on Fracture Energy and Shear Behavior of SCC vol.30, pp.11, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002496
- Probabilistic Analysis for Strain-Hardening Behavior of High-Performance Fiber-Reinforced Concrete vol.12, pp.15, 2017, https://doi.org/10.3390/ma12152399
- Fracture behaviour analysis of the full‐graded concrete based on digital image correlation and acoustic emission technique vol.43, pp.6, 2017, https://doi.org/10.1111/ffe.13222
- Avalanches during flexure of early-age steel fiber reinforced concrete beams vol.53, pp.4, 2020, https://doi.org/10.1617/s11527-020-01520-w
- Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression vol.163, pp.None, 2020, https://doi.org/10.1016/j.measurement.2020.108018
- Crack Propagation Analysis of Synthetic vs. Steel vs. Hybrid Fibre-Reinforced Concrete Beams Using Digital Image Correlation Technique vol.14, pp.1, 2020, https://doi.org/10.1186/s40069-020-00427-8
- Crack Detection and Localisation in Steel-Fibre-Reinforced Self-Compacting Concrete Using Triaxial Accelerometers vol.21, pp.6, 2017, https://doi.org/10.3390/s21062044
- Cohesive stress and fiber pullout behavior in fracture response of concrete with steel and macropolypropylene hybrid fiber blends vol.44, pp.11, 2017, https://doi.org/10.1111/ffe.13543
- Experimental Study on Evaluation of Replacing Minimum Web Reinforcement with Discrete Fibers in RC Deep Beams vol.9, pp.11, 2017, https://doi.org/10.3390/fib9110073