참고문헌
- Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271-295. https://doi.org/10.1007/s40069-016-0157-4
- Abdallah, S., Fan, M., Zhou, X., & Le Geyt, S. (2016). Anchorage effects of various steel fibre architectures for concrete reinforcement. International Journal of Concrete Structures and Materials, 10(3), 325-335. https://doi.org/10.1007/s40069-016-0148-5
- Abou El-Mal, H. S. S., Sherbini, A. S., & Sallam, H. E. M. (2015). Mode II fracture toughness of hybrid FRCs. International Journal of Concrete Structures and Materials, 9(4), 475-486. https://doi.org/10.1007/s40069-015-0117-4
- Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73-82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
- Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: A review. Journal of Materials Science, 51, 1-35. doi:10.1007/s10853-016-9917-4.
- Aitcin, P. C. (2003). The durability characteristics of high performance concrete: A review. Cement & Concrete Composites, 25, 409-420. https://doi.org/10.1016/S0958-9465(02)00081-1
- Barnat-Hunek, D., & Smarzewski, P. (2016). Influence of hydrophobisation on surface free energy of hybrid fiber reinforced ultra-high performance concrete. Construction and Building Materials, 102, 367-377. https://doi.org/10.1016/j.conbuildmat.2015.11.008
- Bencardino, F., Rizzuti, L., Spadea, G., & Swamy, R. N. (2010). Experimental evaluation of fiber reinforced concrete fracture properties. Composites Part B: Engineering, 41(1), 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002
- Bondar, D., Lynsdale, C. J., Milestone, N. B., & Hassani, N. (2015). Sulfate resistance of alkali activated pozzolans. International Journal of Concrete Structures and Materials, 9(2), 145-158. https://doi.org/10.1007/s40069-014-0093-0
- Cavdar, A. (2014). Investigation of freeze-thaw effects on mechanical properties of fiber reinforced cement mortars. Composites Part B: Engineering, 58, 463-472. https://doi.org/10.1016/j.compositesb.2013.11.013
- Chemrouk, M. (2015). The deteriorations of reinforced concrete and the option of high performances reinforced concrete. The 5th International Conference of Euro Asia Civil Engineering Forum (EACEF-5). Procedia Engineering, 125, 713-724. https://doi.org/10.1016/j.proeng.2015.11.112
- Chemrouk, M., & Hamrat, M. (2002). High performance concrete-experimental studies of the material. Proceedings of International Congress: Challenges of Concrete Construction, Conference 1: Innovations and Developments in Concrete Construction, Dundee, Scotland (pp. 869-877).
- Colombo, I. G., Colombo, M., & Di Prisco, M. (2015). Tensile behavior of textile reinforced concrete subjected to freezing-thawing cycles in un-cracked and cracked regimes. Cement and Concrete Research, 73, 169-183. https://doi.org/10.1016/j.cemconres.2015.03.001
- Cwirzen, A., Penttala, V., & Cwirzen, K. (2008). The effect of heat treatment on the salt freeze-thaw durability of UHSC. In Proceedings of the 2nd International Symposium on Ultra High Performance Concrete, Kassel, Germany (pp. 221-230).
- Dawood, E. T., & Ramli, M. (2010). Development of high strength flowable mortar with hybrid fiber. Construction and Building Materials, 24(6), 1043-1050. https://doi.org/10.1016/j.conbuildmat.2009.11.013
- Dils, J., & De Schutter, G. (2015). Vacuum mixing technology to improve the mechanical properties of ultra-high performance concrete. Materials and Structures, 48(11), 3485-3501. https://doi.org/10.1617/s11527-014-0416-2
- Dils, J., Boel, V., & De Schutter, G. (2013). Influence of cement type and mixing pressure on air content, rheology and mechanical properties of UHPC. Construction and Building Materials, 41, 455-463. https://doi.org/10.1016/j.conbuildmat.2012.12.050
- Dinh, N.-H., Choi, K.-K., & Kim, H.-S. (2016). Mechanical properties and modeling of amorphous metallic fiberreinforced concrete in compression. International Journal of Concrete Structures and Materials, 10(2), 221-236. https://doi.org/10.1007/s40069-016-0144-9
- Guse, U., & Hilsdorf, H. K. (1998). Dauerhaftigkeit hochfester Betone. Schriftenreihe des Deutschen Ausschusses fur Stahlbeton (Vol. 487). Berlin: Beuth Verlag.
- Kang, S.-T., Lee, K.-S., Choi, J.-I., Lee, Y., Felekoglu, B., & Lee, B. Y. (2016). Control of tensile behavior of ultra-high performance concrete through artificial flaws and fiber hybridization. International Journal of Concrete Structures and Materials, 10(S3), 33-41. https://doi.org/10.1007/s40069-016-0155-6
- Khitab, A., Arshad, M. T., Hussain, N., Tariq, K., Ali, S. A., Kazmi, S. M. S., et al. (2013). Concrete reinforced with 0.1 vol% of different synthetic fibers. Life Science Journal, 10(12), 934-939.
- Koksal, F., Altun, F., Yigit, I., & Sahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials, 22(8), 1874-1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017
- Koniorczyk, M., Konca, P., & Gawin, D. (2013). Salt crystallization-induced damage of cement mortar microstructure investigated by multi-cycle mercury intrusion. In Van Mier, J. G. M., Ruiz, G., Andrade, C., Yu, R. C. & Zhang, X. X. (Eds.), VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8.
- Li, H., & Liu, G. (2016). Tensile properties of hybrid fiber-reinforced reactive powder concrete after exposure to elevated temperatures. International Journal of Concrete Structures and Materials, 10(1), 29-37. https://doi.org/10.1007/s40069-016-0125-z
- Miao, Ch., Mu, R., Tian, Q., & Sun, W. (2002). Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement. Cement and Concrete Research, 32, 31-34. https://doi.org/10.1016/S0008-8846(01)00624-X
- Nili, M., & Afroughsabet, V. (2012). Property assessment of steel-fibre reinforced concrete made with silica fume. Construction and Building Materials, 28(1), 664-669. https://doi.org/10.1016/j.conbuildmat.2011.10.027
- Pierard, J., & Cauberg, N. (2009). Evaluation of durability and cracking tendency of ultra-high performance concrete. Creep, shrinkage and durability mechanics of concrete and concrete structures (pp. 695-700). London: Taylor and Francis Group.
- Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347-1358. https://doi.org/10.1016/S0008-8846(99)00002-2
- Sivakumar, A., & Santhanam, M. (2007). A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete. Cement & Concrete Composites, 29(7), 575-581. https://doi.org/10.1016/j.cemconcomp.2007.03.005
- Smarzewski, P., & Barnat-Hunek, D. (2013). Surface free energy of high performance concrete with addition of polypropylene fibers. Composites Theory and Practice, 15(1), 8-15.
- Smarzewski, P., & Barnat-Hunek, D. (2015). Fracture properties of plain and steel-polypropylene-fiber-reinforced high-performance concrete. Materials and technology, 49(4), 563-571.
- Song, P. S., Hwang, S., & Sheu, B. C. (2005). Strength properties of nylon- and polypropylene-fiber-reinforced concretes. Cement and Concrete Research, 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Sorensen, C., Berge, E., & Nikolaisen, E. B. (2014). Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International Journal of Concrete Structures and Materials, 8(4), 279-287. https://doi.org/10.1007/s40069-014-0083-2
- Structural Concrete. (2009). Textbook on behaviour, design and performance, Second edition, Volume 1, fib Bull.51.
- Toutanji, H. A. (1999). Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Construction and Building Materials, 13(4), 171-177. https://doi.org/10.1016/S0950-0618(99)00027-6
- Wang, R., & Gao, X. (2016). Relationship between flowability, entrapped air content and strength of UHPC mixtures containing different dosage of steel fiber. Applied Sciences, 6(8), 216. https://doi.org/10.3390/app6080216
- Wille, K., Naaman, A., & Montesinos, G. (2011). Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way. ACI Materials Journal, 108(1), 46-54.
- Yang, K. H. (2011). Test on concrete reinforced with hybrid or monolithic steel and polyvinyl alcohol fibers. ACI Materials Journal, 108(6), 664-672.
- Yang, H., Shen, X., Rao, M., Li, X., & Wang, X. (2015). Influence of alternation of sulfate attack and freeze-thaw on microstructure of concrete. Advances in Materials Science and Engineering, 10, 859069.
- Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and Concrete Research, 33(1), 27-30. https://doi.org/10.1016/S0008-8846(02)00913-4
- Yun, Y., & Wu, Y. F. (2011). Durability of CFRP-concrete joints under freeze-thaw cycling. Cold Regions Science and Technology, 65(3), 401-412. https://doi.org/10.1016/j.coldregions.2010.11.008
피인용 문헌
- Applications of Steel Slag Powder and Steel Slag Aggregate in Ultra-High Performance Concrete vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/1426037
- Flexural Toughness of High-Performance Concrete with Basalt and Polypropylene Short Fibres vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/5024353
- The Microstructure-Mechanical Properties of Hybrid Fibres-Reinforced Self-Compacting Lightweight Concrete with Perlite Aggregate vol.11, pp.7, 2017, https://doi.org/10.3390/ma11071093
- Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach vol.127, pp.None, 2017, https://doi.org/10.1016/j.advengsoft.2018.10.002
- Analysis of Failure Mechanics in Hybrid Fibre-Reinforced High-Performance Concrete Deep Beams with and without Openings vol.12, pp.1, 2017, https://doi.org/10.3390/ma12010101
- Effects of Aging on the Tensile Properties of Polyethylene Fiber-Reinforced Alkali-Activated Slag-Based Composite vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/7573635
- Study of Toughness and Macro/Micro-Crack Development of Fibre-Reinforced Ultra-High Performance Concrete After Exposure to Elevated Temperature vol.12, pp.8, 2017, https://doi.org/10.3390/ma12081210
- Strain-Hardening and High-Ductile Behavior of Alkali-Activated Slag-Based Composites with Added Zirconia Silica Fume vol.12, pp.21, 2017, https://doi.org/10.3390/ma12213523
- A Study of Impact Response and Its Numerical Study of Hybrid Polypropylene Fiber-Reinforced Concrete with Different Sizes vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/6534080
- Properties of Fibrous Concrete Made with Plastic Optical Fibers from E-Waste vol.13, pp.10, 2017, https://doi.org/10.3390/ma13102414
- Flexural Behavior of Composite Concrete Slabs Made with Steel and Polypropylene Fibers Reinforced Concrete in the Compression Zone vol.13, pp.16, 2017, https://doi.org/10.3390/ma13163616
- Flexural Performance of Steel Reinforced ECC-Concrete Composite Beams Subjected to Freeze-Thaw Cycles vol.14, pp.1, 2017, https://doi.org/10.1186/s40069-019-0385-5
- Review on the Durability of Polypropylene Fibre-Reinforced Concrete vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6652077
- Chloride diffusivity and mechanical performance of UHPC with hybrid fibers under heat treatment regime vol.26, pp.None, 2017, https://doi.org/10.1016/j.mtcomm.2021.102146
- Mechanical Behavior of Ultrahigh-Performance Concrete Tunnel Lining Segments vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092378
- Application of fracture energy for the assessment of frost degradation of high-strength concretes vol.20, pp.2, 2017, https://doi.org/10.35784/bud-arch.2453
- Freeze-thaw resistance of Ultra-High performance concrete: Dependence on concrete composition vol.293, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2021.123523
- New development of ultra-high-performance concrete (UHPC) vol.224, pp.None, 2021, https://doi.org/10.1016/j.compositesb.2021.109220