• Title/Summary/Keyword: salt resistance

Search Result 603, Processing Time 0.03 seconds

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

Evaluation of Salt Damage Resistance of Concrete according to Fire Control Time (화재진압시간에 따른 콘크리트의 염해저항성 평가)

  • Lee, Jun-Hae;Park, Dong-cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.109-110
    • /
    • 2020
  • In the event of a fire, fire engines usually arrive within 15 minutes and become a fire suppressor. In this paper, an analytical model was established to evaluate the salt damage resistance of concrete according to fire suppression time, and the concentration of salt inside the concrete after fire was measured and the time to reach the critical concentration was assessed by how short.

  • PDF

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Exposure Environment (I) (해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (I))

  • 신도철;김영웅;김용철;김동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.51-56
    • /
    • 2002
  • Protection against salt attack in seawater is obtained by using a dense, quality concrete with a low water-cement ratio, and a components appropriate for producing concrete having the needed salt resistance. The objective of this study is to evaluate the feature of corrosion with using the various concrete materials under marine exposure environment. According to the test results, slag powder and anti -corrosion inhibitor showed high chloride resistance effect. Also concre crack have an influence on corrosion of steel in spite of mixed design for salt resistance concrete. The requirement for low permeability is essential not only to delay the effect of salt attack, but also to afford adquate protection to reinforcement with admixtures.

  • PDF

High Temperature Salt Corrosion Property of Ferritic Stainless Steels (페라이트계 스테인리스강의 고온염 부식특성에 관한 연구)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

Enhanced Moisture Resistance of Salt Core through 2D Kaolinite Colloidal Solution Coating

  • So-Yeon Yoo;Ahrom Ryu;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.154-158
    • /
    • 2023
  • This study aimed to improve the moisture resistance of salt cores by investigating the suitability of a two-dimensional kaolinite colloidal solution and a commercially available SiO2 ink solution as coating agents. X-ray diffraction analysis (XRD) results showed that the intercalation of urea into kaolinite did not significantly change its layer structure. Scanning electron microscopy (SEM) images revealed that the dip-coating only affected the surface of the salt core, and the texture of the surface is differ depending on the coating solution. The humidity absorption test results showed that both coatings reduced the hygroscopicity of the salt core by more than 50%. However, in the water-solubility test, the kaolinite dissolved with the salt core, whereas the SiO2-coated salt core left a residue. These results strongly suggest that with the coating of the exfoliated kaolinite solution, salt core will remain stable in humid environments.

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Evaluation of the Corrosion Resistance of Plated Ni and Ni-Cr Layers on Fe Substrate by Using Salt Spray, CASS and EC Tests (철소지 위에 형성된 니켈 및 니켈-크롬 도금층의 염수분무, 캐스, 전해부식시험법을 이용한 내식성평가)

  • 신재호;이동훈;이재봉;신성호
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.4
    • /
    • pp.307-316
    • /
    • 2003
  • Salt spray, CASS(copper accelerated acetic salt spray) and EC(electrolytic corrosion) tests were performed in order to evaluate the corrosion resistance of plated Ni and Ni-Cr layers on Fe substrate. Compared with the conventional methods such as salt spray and CASS, the electrochemical method such as EC test may be beneficial in terms of test time span and quantitative accuracy. Furthermore, EC test can also become the alternative method to evaluate the resistance to corrosion of coatings by measuring the corrosion potentials of the coated layers in the electrolyte during the off-time of EC cycles. Compared with the corrosion potentials of pure iron, nickel, chromium, those potentials of coated layers can be used to anticipate the extent of corrosion. Results showed that in terms of the test time span, EC test gave 14 times and 21 times faster results than the salt spray test in cases of $5\mu\textrm{m}$ Ni and $20\mu\textrm{m}$ Ni plated layers, respectively. In addition, EC test also offered the shorter test time span than CASS test in cases of $5 \mu\textrm{m}$ Ni + $0.5\mu\textrm{m}$ Cr, and $20\mu\textrm{m}$ Ni + $0.5\mu\textrm{m}$ Cr on Fe substrate by 78 times and 182 times, respectively. Therefore, EC test can be regarded as the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as salt spray and CASS.

Scaling Resistance of Cement Concrete Incorporating Mineral Admixtures (광물질혼화재를 적용한 콘크리트의 스케일링 저항성 평가)

  • Lee, Seung-Tae;Park, Se-Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • PURPOSES: The scaling of a concrete surface caused by the combined effects of frost and de-icing salts is one of the main reasons for the need to repair transportation infrastructures in cold-climate regions. This study describes the results of attempts to determine the scaling resistance of concrete incorporating mineral admixtures such as fly ash, GGBFS, and silica fume, and subjected to the actions of frost and salt. METHODS : Conventionally, to evaluate the fundamental properties of concrete, flexural and compressive strength measurements are regularly performed. Based on the ASTM C 672 standard, concrete is subjected to 2%, 4%, and 8% $CaCl_2$ salt solutions along with repeated sets of 50 freeze/thaw cycles, and the scaling resistance was evaluated based on the mass of the scale and a visual examination. RESULTS : It was observed that silica fume is very effective in enhancing the scaling resistance of concrete. Meanwhile, concrete incorporating GGBFS exhibited poor resistance to scaling, especially in the first ten freeze/thaw cycles. However, fly ash concrete generally exhibited the maximum amount of damage as a result of the frost-salt attack, regardless of the concentrations of the solutions. CONCLUSIONS: It can be concluded that the scaling resistance of concrete is highly dependent on the type of the mineral admixture used in the concrete. Therefore, to provide a durable concrete pavement for use in cold-climate regions, the selection of a suitable binder is essential.

Salt damage resistance of mortar substrate coated by the urethane and acrylic waterproofing membranes (우레탄계와 아크릴계 도막 방수재가 도포된 바탕 모르타르의 염해 저항성 평가)

  • Lee, Jun;Miyauchi, Hiroyuki;Koo, Kyung-Mo;Choe, Gyeong-Cheol;Miyauchi, Kaori;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.329-331
    • /
    • 2013
  • The salt damage resistance of waterproofing membrane was evaluated on the cracked mortar substrate. The types of specimens are urethane, acrylic waterproofing membrane, and no coating mortar substrate. After these specimens were cured by water curing for 4 weeks, they were cured by atmospheric curing at 20±2Co for 8 weeks. The salt water immersion test was carried out by following KS F 2737, and the penetration depth of chloride ion into substrate was measured in 1, 4, 8, and 13 weeks. As a result, in the case of non coating specimen, the chloride ion penetrated within one week. In the coated specimens, a regardless of the membrane type, the chloride ion did not penetrate during 13 weeks-tests on condition that the cracked width of substrate is less than 0.3mm. Also, the penetration speeds of the coated specimens were lower than that of non coating specimen. Therefore, our results reached a conclusion that waterproofing membrane has high salt damage resistance.

  • PDF