References
- ACI (American Concrete Institute). (2008). ACI 318-08: Building code requirements for structural concrete and commentary. Farmington Hills, MI: Committee 318, American Concrete Institute.
- Altinier, D. (2015). Prova di carico - tegolo tipo BigOndal. Load test report No. 3498/TV, 4emme (pp. 24).
- Bamonte, P., & Pisani, M. A. (2015). Creep analysis of compact cross-sections cast in consecutive stages-Part 2: Algebraic models. Engineering Structures, 96, 178-189. https://doi.org/10.1016/j.engstruct.2014.04.036
- Barr, P. J., & Angomas, F. (2010). Differences between calculated and measured long-term deflections in a prestressed concrete girder bridge. Journal of Performance of Constructed Facilities, 24(6), 603-609. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000121
- Belleri, A., Torquati, M., & Riva, P. (2014). Seismic performance of ductile connections between precast beams and roof elements. Magazine of Concrete Research, 66(11), 553-562. https://doi.org/10.1680/macr.13.00092
- Belletti, B. (2009). Evaluation of the interaction effects in coupled thin walled prestressed concrete roof elements. European Journal of Environmental and Civil Engineering, 13(6), 745-764. https://doi.org/10.1080/19648189.2009.9693149
- Belletti, B., Bernardi, P., & Michelini, E. (2016). Behavior of thin-walled prestressed concrete roof elements-Experimental investigation and numerical modelling. Engineering Structures, 107, 166-179. https://doi.org/10.1016/j.engstruct.2015.06.058
- Biondini, F., Dal Lago, B., & Toniolo, G. (2013). Role of wall panel connections on the seismic performance of precast structures. Bulletin of Earthquake Engineering, 11, 1061-1081. https://doi.org/10.1007/s10518-012-9418-z
- Biondini, F., & Toniolo, G. (2010). Experimental research on seismic behavior of precast structures. Italian Cement Industry, 854, 74-79.
- Bischoff, P. H. (2005). Re-evaluation of deflection predictions for concrete beams reinforced with steel and FRP bars. Journal of Structural Engineering, ASCE, 131(5), 752-767. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752)
- Branson, D. E. (1977). Deformation of concrete structures. New York: McGraw-Hill.
- Breccolotti, M., & Materazzi, A. M. (2015). Prestress losses and camber growth in wing-shaped structural members. PCI Journal, 60(1), 98-117.
- Carbonari, S., Gara, F., Roia, D., Leoni, G., & Dezi, L. (2013). Tests on two 18-years-old prestressed thin walled roof elements. Engineering Structures, 49, 936-946. https://doi.org/10.1016/j.engstruct.2012.12.037
- CEB (1984) Structural effects of time-dependent behaviour of concrete. St. Saphorin: CEB Bulletin 142/142 bis, Georgi.
- CEB-FIB. (2013). fib Model Code 2010, fib bulletin 66 (Vol. 1). Lausanne: Federation Internationale du Beton/International Federation for Structural Concrete.
- Colombo, A., Negro, P. & Toniolo, G. (2014). The influence of claddings on the seismic response of precast structures: The Safecladding project. In Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology. Istanbul, Turkey, August 25-29, Paper No. 1877.
- Crossett, P., Taylor, S., Robinson, D., Sonebi, M., Garcia-Taengua, E., Deegan, P. & Ferrara, L. (2015). The flexural behaviour of SCC beams pre-stressed with BFRP. In Proceedings of the 7th conference of Advanced Composite in Constructions. Cambridge, UK, September 9-11, pp. 62-67.
- Dal Lago, A. (1973). Progetto e verifica della deformazione negli elementi precompressi (Design and verification of deformation in pre-stressed members. LIPE-L'Industria Italiana Per l'Edilizia (Italian Industry for Construction), 4-5-6.
- Dal Lago, B., Dal Lago, A., Basso, A. & Franceschelli, F. (2016a). Exceptional long-span element for industrial roofing. Concrete Plant International, 3, 182-184.
- Dal Lago, A. & Mantegazza, G. (1988). Indagine teorico sperimentale sulla durabilita di strutture in calcestruzzo a ridotto spessore (strutture Ondal) impiegando un additivo liquido a base di silica fume. In Proceedings of the 7th CTE (Collegio dei Tecnici dell'industrializzazione Edilizia) Congress. Venice, Italy, November 4-6.
- Dal Lago, B., Taylor, S., Deegan, P., Crossett, P., Sonebi, M., Ferrara, L. & Pattarini, A. (2016c). Pre-stressing using BFRP bars: An experimental investigation on a new frontier of FRSCC. In Proceedings of the conference on Civil Engineering Research in Ireland 2016, Galway, Republic of Ireland, Paper No. 19.
- Dal Lago, B., Toniolo, G., & Lamperti Tornaghi, M. (2016b). Influence of different mechanical column-foundation connection devices on the seismic behaviour of precast structures. Bulletin of Earthquake Engineering. doi:10.1007/s10518-016-0010-9.
- di Prisco, M., Dozio, D., & Belletti, B. (2012). On the fracture behaviour of thin-walled SFRC roof elements. Materials and Structures, 46(5), 803-829. https://doi.org/10.1617/s11527-012-9935-x
- EN 1992-1-1:2005. (2005). Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings. Brussels: European Committee for Standardization.
- Ercolino, M., Magliulo, G., & Manfredi, G. (2016). Failure of a precast RC building due to Emilia-Romagna earthquakes. Engineering Structures, 118, 262-273. https://doi.org/10.1016/j.engstruct.2016.03.054
- G+D Computing (2010) Using Strand7 (Straus7)-Introduction to the Strand7 finite element analysis system, 3rd edn. Sydney: Strand7 Pty Limited.
- Ghali, A., Favre, R., & Elbadry, M. (2011). Concrete structures: Stresses and deformations: Analysis and design for sustainability (4th ed.). London: CRC Press.
- Gribniak, V., Bacinskas, D., Kacianauskas, R., Kaklauskas, G., & Torres, L. (2013). Long-term deflections of reinforced concrete elements: Accuracy analysis of predictions by different methods. Mechanics of Time-Dependant Materials, 17, 297-313. https://doi.org/10.1007/s11043-012-9184-y
- Kim, S. J., Kim, J. H. J., Yi, S. T., Md Noor, N. B., & Kim, S. C. (2016). Structural performance evaluation of a precast PSC curved girder bridge constructed using multi-tasking formworks. International Journal of Concrete Structures and Materials, 10(Suppl 3), 1-17.
- Knight, D., Visintin, P., & Oehlers, D. J. (2015). Displacement-based simulation of time-dependent behaviour of RC beams with prestressed FRP or steel tendons. Structural Concrete, 3, 406-417.
- Lee, C., Lee, S., & Nguyen, N. (2016a). Modeling of compressive strength development of high-early-strength-concrete at different curing temperatures. International Journal of Concrete Structures and Materials, 10(2), 205-219. https://doi.org/10.1007/s40069-016-0147-6
- Lee, S., Nguyen, N., Le, T. S., & Lee, C. (2016b). Optimization of curing regimes for precast prestressed members with early-strength concrete. International Journal of Concrete Structures and Materials, 10(3), 257-269. https://doi.org/10.1007/s40069-016-0154-7
- Martin, L. D. (1977). A rational method for estimating camber and deflection of precast prestressed members. PCI Journal, 22(1), 100-108.
- Migliacci, A. & Mola, F. (1985). Progetto agli stati limite delle strutture in c.a. (Limit state design of r.c. structures). Vol. 2, Masson editor.
- Mola, F. (1997). Long term analysis of R.C. and P.C. structures according to Eurocode2. In Proceedings of the International ECSN (European Concrete Standard in Practice), Copenhagen.
- Mola, F. & Pellegrini, L. M. (2012). The new model for creep of concrete in fip model code 2010. In Proceedings of the 37th conference on Our World in Concrete & Structures, Singapore.
- Pisani, M. A. (2012). Creep analysis of compact cross-sections cast in consecutive stages-Part 1: General method. Engineering Structures, 43, 12-20. https://doi.org/10.1016/j.engstruct.2012.04.041
- Roller, J. J., Russell, H. G., Bruce, R. N., & Alaywan, W. R. (2011). Evaluation of prestress losses in high-strength concrete bulb-tee girders for the rigolets pass bridge. PCI Journal, 56(1), 110-134. https://doi.org/10.15554/pcij.01012011.110.134
- Roller, J. J., Russell, H. G., Bruce, R. N., & Hassett, B. (2003). Effects of curing temperatures on high strength concrete bridge girders. PCI Journal, 48(5), 72-79.
- Rosa, M. A., Stanton, J. F., & Eberhard, M. O. (2007). Improving predictions for camber in precast, prestressed concrete bridge girders. Washington State Transportation Center, University of Washington, Seattle WA, USA, Research Report, Agreement T2695. Task, 68, 1-342.
- Sargin, M. (1971). Stress-strain relationship for concrete and analysis of structural concrete sections. Canada: Study n. 4, Solid Mechanics Division, University of Waterloo.
- Singh, B. P., Yazdani, N., & Ramirez, G. (2013). Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders. International Journal of Concrete Structures and Materials, 7(3), 183-191. https://doi.org/10.1007/s40069-013-0037-0
- Storm, T. K., Rizkalla, S. H., & Zia, P. Z. (2013). Effect of production practices on camber of prestressed concrete bridge girders. PCI Journal, 58(4), 96-111. https://doi.org/10.15554/pcij.01012013.96.111
- Tadros, M. K., Fawzy, F., & Hanna, K. E. (2011). Precast, prestressed girder camber variability. PCI Journal, 56(1), 135-154. https://doi.org/10.15554/pcij.01012011.135.154
- Toniolo, G. (2012). SAFECAST project: European research on seismic behaviour of the connections of precast structures. In Proceedings of the 15th World Conference of Earthquake Engineering (WCEE), Lisbon, paper No.1389.
Cited by
- Experimental and Numerical Assessment of Flexural and Shear Behavior of Precast Prestressed Deep Hollow-Core Slabs vol.14, pp.1, 2020, https://doi.org/10.1186/s40069-020-00407-y