DOI QR코드

DOI QR Code

Callus induction and plant regeneration from immature zygotic embryos of various maize genotypes (Zea mays L .)

다양한 계통의 옥수수 미성숙배로부터 캘러스 유도와 식물체 재분화

  • Hong, Joon Ki (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Ki Jin (Maize Experiment Station, Gangwondo Agricultural Research and Extension Services) ;
  • Lee, Gang-Seob (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Dool Yi (Crop Foundation Research division, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Ju-Kon (Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University) ;
  • Lee, Seung Bum (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Suh, Eun Jung (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Yeon-Hee (Agricultural Biotechnology Department, National Institute of Agricultural Sciences, Rural Development Administration)
  • 홍준기 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 박기진 (강원도 농업기술원 옥수수연구소) ;
  • 이강섭 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김둘이 (농촌진흥청 국립식량과학원 작물기초기반과) ;
  • 김주곤 (서울대학교 그린바이오과학기술연구원 종자생명과학연구소) ;
  • 이승범 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 서은정 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이연희 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2017.02.17
  • Accepted : 2017.03.17
  • Published : 2017.03.31

Abstract

We investigated the callus induction and plant regeneration ability of 16 maize genotypes, including the Korean inbred lines, using 9 to 15 day-old immature zygotic embryos from maize grown in pots and from field cultures. Immature zygotic embryos placed on MS medium supplemented with L-proline 0.7 g/L, MES 0.5 g/L, Dicamba 1.5 mg/L, 2,4-D 0.5 mg/L, $AgNO_3$ 4 mg/L, and sucrose 20 g/L, showed the highest frequency of callus induction. The highest number of shoots regenerated when the embryogenic callus were transferred to MS medium supplemented with 5 mg/L zeatin. The root formation was observed when shoots were grown on MS medium supplemented with 0.2 mg/L indole-3-butyric acid (IBA). Additionally, under the same culture conditions, immature zygotic embryos from maize grown in the field also had a high frequency of plant regeneration. Except one genotype, 15 genotypes showed callus induction and shoot regeneration. Among the 16 genotypes tested, H99, B98, HW3, and B73 yielded the best plant regeneration. H99 showed maximum shoot formation from the primary embryogenic callus. The results suggest that genotypes and growth conditions of the maize plant plays very important roles for enhancing the embryogenesis competence of immature zygotic embryos. The successful regeneration from immature zygotic embryos of maize inbred lines provides a basis for molecular breeding of new cultivars by genetic transformation.

옥수수의 최적 조직 배양 조건을 확립하기 위하여 옥수수 국내 5 계통과 국외 11 계통 총 16 계통을 포트와 포장 재배하여 미성숙 배를 분리하여 배발생 캘러스 유도 및 식물체 재분화율을 조사하였다. MS 배지에 auxin으로 1.5 mg/L Dicamba와 0.5 mg/L 2,4-D 가 첨가된 배지에서 캘러스 형성은 본 실험에 사용된 옥수수 계통 모두에서 높은 빈도로 유도되었으며, 캘러스로부터 식물체 재분화는 5mg/L zeatin이 첨가된 재분화 배지에서 높은 재분화율을 보였다. 또한 포장에서 재배된 옥수수로부터 미성숙 배를 분리하여 사용하였을 때 캘러스 유기 및 식물체 재분화 효율이 높았던 것으로 보아 미성숙 배를 분리하기 위한 옥수수 상태 및 genotype이 중요한 영향을 준다는 것을 알 수 있었다. 본 실험을 통하여 배 발생 캘러스 형성 및 식물체 재분화 효율이 조사된 옥수수 계통들은 생명공학 기술을 활용한 신품종 개발을 위한 형질전환 시스템 개발에 유전자원으로 활용될 수 있는 정보를 제공할 것으로 사료된다.

Keywords

References

  1. Abebe DZ, Teffera W, Machuka JS (2008) Regeneration of tropical maize lines (Zea mays l.) from mature zygotic embryo through callus initiation. Afr J Biotechnol 7(13):2181-2186
  2. Ahmadabadi M, Ruf S, Bock R (2007) A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 16:437-448 https://doi.org/10.1007/s11248-006-9046-y
  3. Al-Abed D, Rudrabhatla S, Talla R, Goldman S (2006) Split-seed: a new tool for maize researchers. Planta 223:1355-1360 https://doi.org/10.1007/s00425-006-0237-9
  4. Ali F, Ahsan M, Saeed NA, Ahmed M, Ali Q, Kanwal N, Tehseen MM, Ijaz U, Bibi I, Niazi NK (2014) Establishment and optimization of callus-to-plant regeneration system using mature and immature embryos of maize (Zea mays). Inter J Agric Biol 16:111-117
  5. Anami SE, Mgutu AJ, Taracha C, Coussens G, Karimi M, Hilson P, Lijsebettens MV, Machuka J (2010) Somatic embryogenesis and plant regeneration of tropical maize genotypes. Plant Cell Tissue Organ Cult 102:285-295 https://doi.org/10.1007/s11240-010-9731-7
  6. Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207-214 https://doi.org/10.1007/BF00396083
  7. Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genetics Cooperative Newsletter 65:92-93
  8. Binnot JJ, Songa JM, Ininda J, Njagi EM, Machuka J (2008) Plant regeneration from immature embryos of Kenyan maize inbred lines and their respective single cross hybrids through somatic embryogenesis. Afr J Biotechnol 7(8):981-987
  9. Bohorova NE, Luna B, Brito RM, Huerta LD, Hoisington DA (1995) Regeneration potential of tropical, sub tropical, mid altitude and highland maize inbreds. Maydica 40:275-281
  10. Carvalho CHS, Bohorova N, Bordallo PN, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17:73-76 https://doi.org/10.1007/s002990050355
  11. Cho M-A, Park Y-O, Kim J-S, Park k-J, Min H-K., Liu J-R, Choi P-S (2005) Yellowish friable embryogenic callus (YFEC) production and plant regeneration from immature embryo cultures of domestic maize cultivars and genotypes (Zea may L.). Korean J Plant Biotechnol 32(2):117-121 https://doi.org/10.5010/JPB.2005.32.2.117
  12. Clive J (2014) Global status of commercialized Biotech/GM crops. ISAAA Brief No. 49
  13. Conger BV, Novak FJ, Afza R, Erdelsky K (1987) Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep 6:345-347 https://doi.org/10.1007/BF00269556
  14. De-yi Z, You-yin Z, L. Qian L, Ti Z, De-gang Z (2011) Production of embryogenic callus and plant regeneration from elite Guizhou waxy maize inbred lines. Agric Sci China 10(4): 490-498 https://doi.org/10.1016/S1671-2927(11)60029-1
  15. Duncan DR, Williams ME, Zehr BE, Widholm JM (1985). The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322-332 https://doi.org/10.1007/BF00392228
  16. El-Itriby HA, Assem SK, Hussein EHA, Abdel-Galil FM, Madkour MA (2003) Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cellular and Development Biology-Plant 39:524-531 https://doi.org/10.1079/IVP2003439
  17. Gonzalez GA, Pacheco MG, Oneto CD, Etchart VJ, Kandus MV, Salerno JC, Eyherabide G, Presello D, Lewi DM (2012) Somatic embryogenesis and plant regeneration capacity in Argentinean maize (Zea mays L.) inbred lines. Electronic J biotechn 15:1-7
  18. Green CE, Phillips RL (1975) Plant regeneration from tissue cultures of maize. Crop Sci 15:417-421 https://doi.org/10.2135/cropsci1975.0011183X001500030040x
  19. Hodges TK, Kamo KK, Imbrie CW, Becwar MR (1986) Genotype specificity of somatic embryogenesis and regeneration in maize. Nat Biotech 4:219-223 https://doi.org/10.1038/nbt0386-219
  20. Huang XQ, Wei ZM (2004) High frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793-800 https://doi.org/10.1007/s00299-003-0748-9
  21. Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protocols 2:1614-1621 https://doi.org/10.1038/nprot.2007.241
  22. Jia XX, Zhang JW, Wang HN, Kong WP (2008) Efficient maize (Zea mays L.) regeneration derived from mature embryos in vitro. Maydica 53:239-248
  23. Li W, Sun G, Liu J, Masilamany P, Taylor JH, Yan W, Kasha KJ, Pauls KP (2004) Inheritance of plant regeneration from maize (Zea mays L.) shoot meristem cultures derived from germinated seeds and the identification of associated RAPD and SSR markers. Theor Appl Genet 108:681-687 https://doi.org/10.1007/s00122-003-1489-4
  24. Ombori O, Gitonga NM, Machuka J (2008) Somatic embryogenesis and plant regeneration from immature embryos of tropical maize (Zea mays L.) inbred lines. Biotech 7:224-232 https://doi.org/10.3923/biotech.2008.224.232
  25. Pareddy DR, Petolino JF (1990) Somatic embryogenesis and plant regeneration from immature inflorescences of several elite inbreds of maize. Plant Sci 67:211-219 https://doi.org/10.1016/0168-9452(90)90245-J
  26. Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton MD (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379
  27. Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ Cult 100:31-37 https://doi.org/10.1007/s11240-009-9613-z
  28. Santos MA, Torne JM, Blanco JL (1984) Methods of obtaining maize totipotent tissues. I. Seedling segments culture. Plant Sci Lett 33:309-315 https://doi.org/10.1016/0304-4211(84)90022-1
  29. Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacteriummediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320-328 https://doi.org/10.1007/s00299-005-0058-5
  30. Songstad DD, Peterson WL, Armstrong CL (1992) Establishment of friable embryogenic (type II) callus from immature tassels of Zea mays (Poaceae). Am J Bot 79(7):761-764 https://doi.org/10.1002/j.1537-2197.1992.tb13651.x
  31. Songstad DD, Duncan DR, Widholm JM (1988) Effect of l-aminocyclopropane-l-carboxylic acid, silver nitrate, and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep 7:262-265 https://doi.org/10.1007/BF00272538
  32. Suprasanna P, Rao KV, Reddy GM (1986) Plantlet regeneration from glume calli of maize (Zea mays L.). Theor Appl Genet 72:120-122
  33. Ting YC, Yu M, Zheng WZ (1981) Improved anther culture of maize (Zea mays). Plant Sci Lett 23:139-145 https://doi.org/10.1016/0304-4211(81)90003-1
  34. Torne JM, Santos MA, Pons A, Blanco M (1980) Regeneration of plants from mesocotyl tissue cultures of immature embryos of Zea mays L. Plant Sci Lett 17:339-344 https://doi.org/10.1016/0304-4211(80)90166-2
  35. Wan Y, Widholm JM, Lemaux PG (1995) TypeIcallus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7-14
  36. Wang AS (1987) Callus induction and plant regeneration from maize mature embryos. Plant Cell Rep 6: 360-362 https://doi.org/10.1007/BF00269560
  37. Wang Y, Fu S, Wen Y, Zhang Z, Xia Y, Liu Y, Rong T, Pan G (2007) Selection of maize inbred lines with high regeneration and susceptibility to Agrobacterium tumefacien. J Genet Genomics 34(8):749-755 https://doi.org/10.1016/S1673-8527(07)60084-8
  38. Zhao C, Zhang L, Ge C, Hu K (2008) Establishment and optimization of the regeneration system of mature embryos of maize (Zea mays L.). Agricult Sci China 7(9):1046-1051 https://doi.org/10.1016/S1671-2927(08)60145-5