DOI QR코드

DOI QR Code

Characterizing Barium Titanate Piezoelectric Material Using the Finite Element Method

  • Butt, Zubair (Department of Mechatronics Engineering, Chakwal Campus, University of Engineering and Technology Taxila) ;
  • Rahman, Shafiq Ur (Department of Mechatronics Engineering, Chakwal Campus, University of Engineering and Technology Taxila) ;
  • Pasha, Riffat Asim (Department of Mechanical Engineering, University of Engineering and Technology Taxila) ;
  • Mehmood, Shahid (Department of Mechanical Engineering, University of Engineering and Technology Taxila) ;
  • Abbas, Saqlain (Department of Mechanical Engineering, University of Engineering and Technology Taxila) ;
  • Elahi, Hassan (Department of Aerospace Engineering, La Sapienza University of Rome)
  • Received : 2016.10.19
  • Accepted : 2017.01.21
  • Published : 2017.06.25

Abstract

The aim of the current research was to develop and present an effective methodology for simulating and analyzing the electrical and structural properties of piezoelectric material. The finite element method has been used to make precise numerical models when dielectric, piezoelectric and mechanical properties are known. The static and dynamic responses of circular ring-shaped barium titanate piezoelectric material have been investigated using the commercially available finite element software ABAQUS/CAE. To gain insight into the crystal morphology and to evaluate the purity of the material, a microscopic study was conducted using a scanning electron microscope and energy dispersive x-ray analysis. It is found that the maximum electrical potential of 6.43 V is obtained at a resonance frequency of 35 Hz by increasing the vibrating load. The results were then compared with the experimentally predicted data and the results agreed with each other.

Keywords

References

  1. Z. Xiao, T. Q. Yang, and Y. Dong, Appl. Phys. Lett., 104, 223904 (2014). https://doi.org/10.1063/1.4878537
  2. Z. Butt, R. A. Pasha, F. Qayyum, Z. Anjum, and H. Elahi, J. Mech. Sci. Technol., 30, 3553 (2016). https://doi.org/10.1007/s12206-016-0715-3
  3. S. Wang, K. H. Lam, C. L. Sun, K. W. Kwok, M. S. Guo, and X. Z. Zhao, Appl. Phys. Lett., 90, 11350 (2007). [DOI: http://dx.doi.org/10.1063/1.2713357]
  4. Z. Butt and R. A. Pasha, IOP Conf. Ser., Mater. Sci. Eng., 14601 (2016).
  5. X. R. Chen, T. Q. Yang, W. Wang, and X. Yao, Ceramics International, 38S, S271 (2012).
  6. F. Qayyum, M. Shah, S. Manzoor, and M. Abbas, Mater. Sci. Technol., 31, 317 (2015). https://doi.org/10.1179/1743284714Y.0000000523
  7. Z. Anjum, F. Qayyum, S. Khushnood, S. Ahmed, and M. Shah, Materials and Design, 87, 750 (2015). https://doi.org/10.1016/j.matdes.2015.08.070
  8. M. W. Lin, J. Intell. Material Sys. And Structures, 5, 869 (1994). https://doi.org/10.1177/1045389X9400500621
  9. W. S. Hwang and H. C. Parket, AIAA J., 31, 930 (1993). https://doi.org/10.2514/3.11707
  10. A. H. Allik and J. R. Hughes, Int. J. Num. Methods Eng., 2, 151 (1970). https://doi.org/10.1002/nme.1620020202
  11. R. Lerch, IEEE Trans. Ultrasonics Feroelectr. Frequency Control, 37, 233 (1990). https://doi.org/10.1109/58.55314
  12. D. H. Wu, W. T. Chien, C. J. Yang, and Y. T. Yen, Sensor. Actuat. A, 118, 171 (2005). https://doi.org/10.1016/j.sna.2004.04.017
  13. C.D.M. Junior and A. Erturk, Journal of Sound and Vibration, 327, 9 (2009). https://doi.org/10.1016/j.jsv.2009.05.015
  14. F. Lowrie, National Physics Laboratory (Teddington, Middlesex, UK, 1999).
  15. M. Staworko and T. Uhl, MECHANICS, 27, 4(2008).
  16. J. A. Venables and C. J. Harland, Philosophical Magazine, 27, 1193 (1973). https://doi.org/10.1080/14786437308225827
  17. X. Wu, X. Pan, and J. F. Stubbins, J. Nucl. Mater., 361, 228 (2007). https://doi.org/10.1016/j.jnucmat.2006.12.033
  18. P. Hortola, Micron 41, 7, 904 (2010). https://doi.org/10.1016/j.micron.2010.06.010
  19. M.N.G. Nejhad and S. Pourjalali, J. of Thermoplast. Compos. Mater., 19, 309 (2006). https://doi.org/10.1177/0892705706062193
  20. A. E. Giannakopoulos and S. Suresh, Acta Mater, 47, 2153 (1999). https://doi.org/10.1016/S1359-6454(99)00076-2
  21. G. H. Haertling, J. Am. Ceramic Soc., 82, 797 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  22. O. Khalid, Z. Butt, W. Tanveer, and H. I. Rao, Heat Mass Transf., 53, 1391 (2017). [DOI: http://dx.doi.org/10.1007/s00231-016-1914-2]