참고문헌
- Champ, C. W. and Rigdon, S. E. (1991). A comparison of the Markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts, Communications in Statistics-Simulation and Computation, 20, 191-204. https://doi.org/10.1080/03610919108812948
- Chan, Y., Han, B., and Pascual, F. (2015). Monitoring the Weibull shape parameter with type II censored data, Quality and Reliability Engineering International, 31, 741-760. https://doi.org/10.1002/qre.1631
- Chang, T. C. and Gan, F. F. (1994). Optimal designs of one-sided EWMA charts for monitoring a process variance, Journal of statistical Computation and Simulation, 49, 33-48. https://doi.org/10.1080/00949659408811559
- Crowder, S. V. (1987a). A simple method for studying run-length distributions of exponentially weighted moving average charts, Technometrics, 29, 401-407.
- Crowder, S. V. (1987b). Average run length of exponentially weighted moving average charts, Journal of Quality Technology, 19, 161-164. https://doi.org/10.1080/00224065.1987.11979055
- Crowder, S. V. and Hamilton, M. D. (1992). An EWMA for monitoring a process standard deviation, Journal of Quality Technology, 24, 12-21. https://doi.org/10.1080/00224065.1992.11979369
- Gan, F. F. (1993). Exponentially weighted moving average control charts with reflecting boundaries, Journal of statistical Computation and Simulation, 46, 45-67. https://doi.org/10.1080/00949659308811492
- Gan, F. F. (1995). Joint monitoring of process mean and variance using exponentially weighted moving average control charts, Technometrics, 37, 446-453. https://doi.org/10.1080/00401706.1995.10484377
- Gan, F. F. (1998). Designs of one- and two-sided exponential EWMA charts, Journal of Quality Technology, 30, 55-69. https://doi.org/10.1080/00224065.1998.11979819
- Gan, F. F. and Chang, T. C. (2000). Computing average run lengths of exponential EWMA charts, Journal of Quality Technology, 32, 183-187. https://doi.org/10.1080/00224065.2000.11979989
- Gianino, A. B., Champ, C. W., and Rigdon, S. E. (1990). Solving integral equations by the collocation method. In ASA Proceedings of the Statistical Computing Section (pp. 101-102), American Statistical Association, Washington.
- Hunter, J. S. (1986). The exponentially weighted moving average, Journal of Quality Technology, 18, 203-210. https://doi.org/10.1080/00224065.1986.11979014
- Knoth, S. (2003). EWMA schemes with non-homogeneous transition kernels, Sequential Analysis, 22, 241-255. https://doi.org/10.1081/SQA-120025169
- Knoth, S. (2004). Fast initial response features for EWMA control charts, Statistical Papers, 46, 47-64.
- Knoth, S. (2005). Accurate ARL computation for EWMA-S2 control charts, Statistics and Computing, 15, 341-352. https://doi.org/10.1007/s11222-005-3393-z
- Knoth, S. (2007). Accurate ARL calculation for EWMA control charts monitoring simultaneously normal mean and variance, Sequential Analysis, 26, 251-264. https://doi.org/10.1080/07474940701404823
- Lucas, J. M. and Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: properties and enhancements, Technometrics, 32, 1-12. https://doi.org/10.1080/00401706.1990.10484583
- MacGregor, J. F. and Harris, T. J. (1993). The exponentially weighted moving variance, Journal of Quality Technology, 25, 106-118. https://doi.org/10.1080/00224065.1993.11979433
- Nichols, M. D. and Padgett, W. J. (2005). A bootstrap control chart for Weibull percentiles, Quality and Reliability Engineering International, 22, 141-151.
- Park, C. (2007). An algorithm for the properties of the integrated process control with bounded adjustments and EWMA monitoring, International Journal of Production Research, 45, 5571-5587. https://doi.org/10.1080/00207540701325397
- Park, C., Lee, J., and Kim, Y. (2004). Economic design of a variable sampling rate EWMA chart, IIE Transactions, 36, 387-399. https://doi.org/10.1080/07408170490426116
- Park, C. and Reynolds, M. R. (1999). Economic design of a variable sampling rates X chart, Journal of Quality Technology, 31, 363-443. https://doi.org/10.1080/00224065.1999.11979943
- Park, C. and Reynolds, M. R. (2008). Economic design of an integrated process control procedure with repeated adjustments and EWMA monitoring, Journal of the Korean Statistical Society, 37, 155-174. https://doi.org/10.1016/j.jkss.2007.10.005
- Park, C. S. and Won, T. Y. (1996). Selection of the economically optimal parameters in the EWMA control chart, Korean Journal of Applied Statistics, 9, 91-109.
- Pascual, F. (2010). EWMA charts for the Weibull shape parameter, Journal of Quality Technology, 42, 400-416. https://doi.org/10.1080/00224065.2010.11917836
- Ramalhoto, M. F. and Morais, M. (1999). Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals, Journal of Applied Statistics, 26, 129-160. https://doi.org/10.1080/02664769922700
- Waldmann, K. H. (1986). Bounds for the distribution of the run length of geometric moving average charts, Applied Statistics, 35, 151-158. https://doi.org/10.2307/2347265