References
- Barriga GDC, Louzada-Neto F, Ortega EMM, and Cancho VG (2010). A bivariate regression model for matched paired survival data: local influence and residual analysis, Statistical Methods and Applications, 19, 477-495. https://doi.org/10.1007/s10260-010-0140-1
- Chatterjee N and Shih J (2001). A bivariate cure-mixture approach for modeling familial association in diseases, Biometrics, 57, 779-786. https://doi.org/10.1111/j.0006-341X.2001.00779.x
- Cook RD (1986). Assessment of local influence, Journal of the Royal Statistical Society Series B (Methodological), 48, 133-169. https://doi.org/10.1111/j.2517-6161.1986.tb01398.x
- Cordeiro GM, Alizadeh M, Pescim RR, and Ortega EMM (2017a). The odd log-logistic generalized half-normal lifetime distribution: properties and applications, Communications in Statistics - Theory and Methods, 46, 4195-4214. https://doi.org/10.1080/03610926.2015.1080841
- Cordeiro GM, Alizadeh M, Ramires TG, and Ortega EMM (2017b). The generalized odd half-Cauchy family of distributions: properties and applications, Communications in Statistics - Theory and Methods, 46, 5685-5705. https://doi.org/10.1080/03610926.2015.1109665
- Cameron AC and Trivedi PK (1998). Regression Analysis of Count Data, Cambridge University Press, New York.
- Clayton DG (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151. https://doi.org/10.1093/biomet/65.1.141
- Da Cruz JN, Ortega EMM, and Cordeiro GM (2016). The log-odd log-logistic Weibull regression model: modelling, estimation, influence diagnostics and residual analysis, Journal of Statistical Computation and Simulation, 86, 1516-1538. https://doi.org/10.1080/00949655.2015.1071376
- Da Silva Braga A, Cordeiro GM, Ortega EMM, and da Cruz JN (2016). The odd log-logistic normal distribution: theory and applications in analysis of experiments, Journal of Statistical Theory and Practice, 10, 311-335. https://doi.org/10.1080/15598608.2016.1141127
- De Paula JS, de Oliveira M, Soares MRSP, Chaves MGAM, and Mialhe FL (2012). Perfil epidemiologico dos pacientes atendidos no pronto atendimento da Faculdade de Odontologia da Universidade Federal de Juiz de Fora. Arquivos em Odontologia (UFMG), 48, 257-262.
- Doornik JA (2007). An Object-Oriented Matrix Language: Ox 5, Timberlake Consultants Press, London.
- Escobar LA and Meeker Jr WQ (1992). Assessing influence in regression analysis with censored data, Biometrics, 48, 507-528. https://doi.org/10.2307/2532306
- Eugene N, Lee C, and Famoye F (2002). Beta-normal distribution and its applications, Communications in Statistics - Theory and Methods, 31, 497-512. https://doi.org/10.1081/STA-120003130
- Fachini JB, Ortega EMM, and Cordeiro GM (2014). A bivariate regression model with cure fraction, Journal of Statistical Computation and Simulation, 84, 1580-1595. https://doi.org/10.1080/00949655.2012.755531
- Frank MJ (1979). On the simultaneous associativity of F(x, y) and x + y - F(x, y), Aequationes Mathematicae, 19, 194-226. https://doi.org/10.1007/BF02189866
- Genest C (1987). Frank's family of bivariate distributions, Biometrika, 74, 549-555. https://doi.org/10.1093/biomet/74.3.549
- Hashimoto EM, Ortega EMM, Cancho VG, and Cordeiro GM (2013). On estimation and diagnostics analysis in log-generalized gamma regression model for interval-censored data, Statistics, 47, 379-398. https://doi.org/10.1080/02331888.2011.605888
- Hashimoto EM, Ortega EMM, Cordeiro GM, and Cancho VG (2015). A new long-term survival model with interval-censored data, Sankhya B, 77, 207-239. https://doi.org/10.1007/s13571-015-0102-6
- He W and Lawless JF (2005). Bivariate location-scale models for regression analysis, with applications to lifetime data, Journal of the Royal Statistical Society Series B (Statistical Methodological), 67, 63-78. https://doi.org/10.1111/j.1467-9868.2005.00488.x
- Lesaffre E and Verbeke G (1998). Local influence in linear mixed models, Biometrics, 54, 570-582. https://doi.org/10.2307/3109764
- Nelsen RB (2006). An Introduction to Copulas (2nd ed), Springer, New York.
- Nunez JSR (2005). Modelagem Bayesiana para Dados de Sobrevivencia Bivariados Atraves de Copulas (Doctoral dissertation), University of Sao Paulo, Brasil (in Portuguese).
- Ortega EMM, Cordeiro GM, and Kattan MW (2013). The log-beta Weibull regression model with application to predict recurrence of prostate cancer, Statistical Papers, 54, 113-132. https://doi.org/10.1007/s00362-011-0414-1
- Ortega EMM, Cordeiro GM, Campelo AK, Kattan MW, and Cancho VG (2015). A power series beta Weibull regression model for predicting breast carcinoma, Statistics in Medicine, 34, 1366-1388. https://doi.org/10.1002/sim.6416
- Ortega EMM, Cordeiro GM, Hashimoto EM, and Suzuki AK (2017). Regression models generated by gamma random variables with long-term survivors, Communications for Statistical Applications and Methods, 24, 43-65. https://doi.org/10.5351/CSAM.2017.24.1.043
- Ortega EMM, Lemonte AJ, Cordeiro GM, and da Cruz JN (2016). The odd Birnbaum-Saunders regression model with applications to lifetime data, Journal of Statistical Theory and Practice, 10, 780-804. https://doi.org/10.1080/15598608.2016.1224746
- Pettitt AN and Bin Daud I (1989). Case-weight measures of influence for proportional hazards regression, Journal of the Royal Statistical Society. Series C (Applied Statistics), 38, 51-67.
- Silva GO, Ortega EMM, and Cancho VG (2010). Log-Weibull extended regression model: estimation, sensitivity and residual analysis. Statistical Methodology, 7, 614-631. https://doi.org/10.1016/j.stamet.2010.05.004
Cited by
- Modeling of soybean yield using symmetric, asymmetric and bimodal distributions: implications for crop insurance pp.1360-0532, 2018, https://doi.org/10.1080/02664763.2017.1406902
- Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data vol.20, pp.9, 2018, https://doi.org/10.3390/e20090642