References
- Birnbaum ZW and Saunders SC (1969). Estimation for a family of life distributions with applications to fatigue, Journal of Applied Probability, 6, 328-347. https://doi.org/10.2307/3212004
- Chib S and Greenberg E (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335.
- De Gusmao FRS, Ortega EMM, and Cordeiro GM (2011). The generalized inverse Weibull distribution, Statistical Papers, 52, 591-619. https://doi.org/10.1007/s00362-009-0271-3
- De Gusmao FRS, Ortega EMM, and Cordeiro GM (2012). Reply to the "Letter to the Editor" of M. C. Jones, Statistical Papers, 53, 253-254. https://doi.org/10.1007/s00362-012-0441-6
- Elbatal I, Condino F, and Domma F (2016). Reflected generalized beta inverse Weibull distribution: definition and properties, Sankhya B, 78, 316-340. https://doi.org/10.1007/s13571-015-0114-2
- Flaih A, Elsalloukh H, Mendi E, and Milanova M (2012). The exponentiated inverted Weibull distribution, Applied Mathematics and Information Sciences, 6, 167-171.
- Gelfand AE and Smith AFM (1990). Sampling-based approaches to calculating marginal densities, Journal of the American Statistical Association, 85, 398-409. https://doi.org/10.1080/01621459.1990.10476213
- Gupta RD and Kundu D (1999). Theory & methods: generalized exponential distributions, Australian and New Zealand Journal of Statistics, 41, 173-188. https://doi.org/10.1111/1467-842X.00072
- Jones MC (2012). Letter to the Editor, Statistical Papers, 53, 251. https://doi.org/10.1007/s00362-012-0440-7
- Khan MS, King R, and Hudson IL (2015). Transmuted generalized exponential distribution: A generalisation of the exponential distribution with applications to survival data, Communications in Statistics - Simulation and Computation, Manuscript just-accepted for publication.
- Khan MS, King R, and Hudson IL (2017). Transmuted Weibull distribution: properties and estimation, Communications in Statistics - Theory and Methods, 46, 5394-5418. https://doi.org/10.1080/03610926.2015.1100744
- Krishna H and Kumar K (2013). Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample, Journal of Statistical Computation and Simulation, 83, 1007-1019. https://doi.org/10.1080/00949655.2011.647027
- Lawless JF (1982). Statistical Models and Methods for Lifetime Data, Wiley, New York.
- Lee S (2014). Bayesian Estimation of Parameters of Inverted Exponentiated Weibull Distribution (Master's Thesis), Pusan National University, Pusan.
- Marshall AW and Olkin I (2007). Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, Springer, New York.
- Mudholkar GS and Srivastava DK (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability, 42, 299-302. https://doi.org/10.1109/24.229504
- Rastogi MK and Tripathi YM (2014). Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring, Journal of Applied statistics, 41, 2375-2405. https://doi.org/10.1080/02664763.2014.910500
- Singh SK, Singh U, and Kumar D (2013). Bayesian estimation of parameters of inverse Weibull distribution, Journal of Applied statistics, 40, 1597-1607. https://doi.org/10.1080/02664763.2013.789492
- Singh U, Gupta PK, and Upadhyay SK (2002). Estimation of exponentiated Weibull shape parameters under LINEX loss function, Communications in Statistics - Simulation Computation, 31, 523-537. https://doi.org/10.1081/SAC-120004310
- Singh U, Gupta PK, and Upadhyay SK (2005). Estimation of three-parameter exponentiated-Weibull distribution under type-II censoring, Journal of Statistical Planning and Inference, 134, 350-372. https://doi.org/10.1016/j.jspi.2004.04.018