DOI QR코드

DOI QR Code

Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations

  • Park, Seongbeom (Department of Biomedical Engineering, Catholic University of Daegu) ;
  • Yoon, Uicheul (Department of Biomedical Engineering, Catholic University of Daegu)
  • Received : 2017.03.13
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

Enlargement of the lateral ventricles have been identified as a surrogate marker of neurological disorders. Quantitative measure of the lateral ventricle from MRI would enable earlier and more accurate clinical diagnosis in monitoring disease progression. Even though it requires an automated or semi-automated segmentation method for objective quantification, it is difficult to define lateral ventricles due to insufficient contrast and brightness of structural imaging. In this study, we proposed a fully automated lateral ventricle segmentation method based on a graph cuts algorithm combined with atlas-based segmentation and connected component labeling. Initially, initial seeds for graph cuts were defined by atlas-based segmentation (ATS). They were adjusted by partial volume images in order to provide accurate a priori information on graph cuts. A graph cuts algorithm is to finds a global minimum of energy with minimum cut/maximum flow algorithm function on graph. In addition, connected component labeling used to remove false ventricle regions. The proposed method was validated with the well-known tools using the dice similarity index, recall and precision values. The proposed method was significantly higher dice similarity index ($0.860{\pm}0.036$, p < 0.001) and recall ($0.833{\pm}0.037$, p < 0.001) compared with other tools. Therefore, the proposed method yielded a robust and reliable segmentation result.

Keywords

References

  1. L. Apostolova, G. Alves, K. S. Hwang, S. Babakchanian, K. S. Bronnick, J. P. Larsen, P. M. Thompson, Y. Y. Chou, O. B. Tysnes, H. K. Vefring, and M. K. Beyer, "Hippocampal and ventricular changes in Parkinson's disease mild cognitive impairment," Neurobiol Aging, vol. 33, pp. 2113-24, Sep 2012. https://doi.org/10.1016/j.neurobiolaging.2011.06.014
  2. M. J. Kempton, D. Stahl, S. C. Williams, and L. E. DeLisi, "Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies," Schizophr Res, vol. 120, pp. 54-62, Jul 2010. https://doi.org/10.1016/j.schres.2010.03.036
  3. C. McDonald, J. Zanelli, S. Rabe-Hesketh, I. Ellison-Wright, P. Sham, S. Kalidindi, R. M. Murray, and N. Kennedy, "Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder," Biol Psychiatry, vol. 56, pp. 411-7, Sep 15 2004. https://doi.org/10.1016/j.biopsych.2004.06.021
  4. S. M. Nestor, R. Rupsingh, M. Borrie, M. Smith, V. Accomazzi, J. L. Wells, J. Fogarty, and R. Bartha, "Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database," Brain, vol. 131, pp. 2443-54, Sep 2008. https://doi.org/10.1093/brain/awn146
  5. C. Fennema-Notestine, D. J. Hagler, Jr., L. K. McEvoy, A. S. Fleisher, E. H. Wu, D. S. Karow, and A. M. Dale, "Structural MRI biomarkers for preclinical and mild Alzheimer's disease," Hum Brain Mapp, vol. 30, pp. 3238-53, Oct 2009. https://doi.org/10.1002/hbm.20744
  6. L. J. Thal, K. Kantarci, E. M. Reiman, W. E. Klunk, M. W. Weiner, H. Zetterberg, D. Galasko, D. Pratico, S. Griffin, D. Schenk, and E. Siemers, "The role of biomarkers in clinical trials for Alzheimer disease," Alzheimer Dis Assoc Disord, vol. 20, pp. 6-15, Jan-Mar 2006. https://doi.org/10.1097/01.wad.0000191420.61260.a8
  7. D. Wang and D. M. Doddrell, "A segmentation-based and partial-volume-compensated method for an accurate measurement of lateral ventricular volumes on T(1)-weighted magnetic resonance images," Magn Reson Imaging, vol. 19, pp. 267-73, Feb 2001. https://doi.org/10.1016/S0730-725X(01)00235-1
  8. L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine, M. Vaidyanathan, L. O. Hall, R. W. Thatcher, and M. L. Silbiger, "MRI segmentation: methods and applications," Magn Reson Imaging, vol. 13, pp. 343-68, 1995. https://doi.org/10.1016/0730-725X(94)00124-L
  9. S. Hu and D. L. Collins, "Joint level-set shape modeling and appearance modeling for brain structure segmentation," Neuroimage, vol. 36, pp. 672-83, Jul 01 2007. https://doi.org/10.1016/j.neuroimage.2006.12.048
  10. M. Chupin, A. R. Mukuna-Bantumbakulu, D. Hasboun, E. Bardinet, S. Baillet, S. Kinkingnehun, L. Lemieux, B. Dubois, and L. Garnero, "Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer's disease," Neuroimage, vol. 34, pp. 996-1019, Feb 01 2007. https://doi.org/10.1016/j.neuroimage.2006.10.035
  11. S. Matsumoto, R. Asato, T. Okada, and J. Konishi, "Intracranial contour extraction with active contour models," J Magn Reson Imaging, vol. 7, pp. 353-60, Mar-Apr 1997. https://doi.org/10.1002/jmri.1880070216
  12. P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert, "Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy," Neuroimage, vol. 46, pp. 726-38, Jul 01 2009. https://doi.org/10.1016/j.neuroimage.2009.02.018
  13. M. J. Kempton, T. S. Underwood, S. Brunton, F. Stylios, A. Schmechtig, U. Ettinger, M. S. Smith, S. Lovestone, W. R. Crum, S. Frangou, S. C. Williams, and A. Simmons, "A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method," Neuroimage, vol. 58, pp. 1051-9, Oct 15 2011. https://doi.org/10.1016/j.neuroimage.2011.06.080
  14. B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, "A Bayesian model of shape and appearance for subcortical brain segmentation," Neuroimage, vol. 56, pp. 907-22, Jun 01 2011. https://doi.org/10.1016/j.neuroimage.2011.02.046
  15. P. Coupe, J. V. Manjon, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins, "Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation," Neuroimage, vol. 54, pp. 940-54, Jan 15 2011. https://doi.org/10.1016/j.neuroimage.2010.09.018
  16. R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, "Automatic anatomical brain MRI segmentation combining label propagation and decision fusion," Neuroimage, vol. 33, pp. 115-26, Oct 15 2006. https://doi.org/10.1016/j.neuroimage.2006.05.061
  17. Z. R. Boykov Y VO, "Fast approximate energy minimization via graph cuts," IEEE transactions on pattern analysis and machine intelligence, vol. 23, pp. 1222-39, 2001. https://doi.org/10.1109/34.969114
  18. A. Hammers, R. Allom, M. J. Koepp, S. L. Free, R. Myers, L. Lemieux, T. N. Mitchell, D. J. Brooks, and J. S. Duncan, "Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe," Hum Brain Mapp, vol. 19, pp. 224-47, Aug 2003. https://doi.org/10.1002/hbm.10123
  19. D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans, "Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space," J Comput Assist Tomogr, vol. 18, pp. 192-205, Mar-Apr 1994. https://doi.org/10.1097/00004728-199403000-00005
  20. J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE Trans Med Imaging, vol. 17, pp. 87-97, Feb 1998. https://doi.org/10.1109/42.668698
  21. S. M., K. N., and Jafri N., "Image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes," International Journal of Computer Science and Engineering, vol. 1, pp. 118-127, 2007.
  22. A. C. Evans, "The NIH MRI study of normal brain development," Neuroimage, vol. 30, pp. 184-202, Mar 2006. https://doi.org/10.1016/j.neuroimage.2005.09.068
  23. J. S. Kim, V. Singh, J. K. Lee, J. Lerch, Y. Ad-Dab'bagh, D. MacDonald, J. M. Lee, S. I. Kim, and A. C. Evans, "Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification," Neuroimage, vol. 27, pp. 210-21, Aug 1 2005. https://doi.org/10.1016/j.neuroimage.2005.03.036
  24. A. P. Zijdenbos, R. Forghani, and A. C. Evans, "Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis," IEEE Trans Med Imaging, vol. 21, pp. 1280-91, Oct 2002. https://doi.org/10.1109/TMI.2002.806283
  25. J. Tohka, A. Zijdenbos, and A. Evans, "Fast and robust parameter estimation for statistical partial volume models in brain MRI," Neuroimage, vol. 23, pp. 84-97, Sep 2004. https://doi.org/10.1016/j.neuroimage.2004.05.007
  26. M. J. Firbank, R. Barber, E. J. Burton, and J. T. O'Brien, "Validation of a fully automated hippocampal segmentation method on patients with dementia," Hum Brain Mapp, vol. 29, pp. 1442-9, Dec 2008. https://doi.org/10.1002/hbm.20480
  27. D. LR, "Measures of the amount of ecologic association between species," Ecology, vol. 26, pp. 297-302, 1945. https://doi.org/10.2307/1932409
  28. R. VV, J. GS, and B. P, "A critical investigation of recall and precision as measures of retrieval-system performance," Acm Transactions on Information Systems, vol. 7, pp. 205-229, 1989. https://doi.org/10.1145/65943.65945
  29. H. G. Schnack, H. E. Hulshoff Pol, W. F. Baare, M. A. Viergever, and R. S. Kahn, "Automatic segmentation of the ventricular system from MR images of the human brain," Neuroimage, vol. 14, pp. 95-104, Jul 2001. https://doi.org/10.1006/nimg.2001.0800