DOI QR코드

DOI QR Code

Correlation Analysis between Climatic Factors and Radial Growth and Growth Prediction for Pinus densiflora and Larix kaempferi in South Korea

소나무와 일본잎갈나무의 연륜생장과 기후 요소와의 상관관계 분석 및 생장예측

  • Chung, Junmo (Forest Practice Research Center, National Institute of Forest Science) ;
  • Kim, Hyunseop (Forest Practice Research Center, National Institute of Forest Science) ;
  • Kim, Meesook (Department of Forestry, Environment, and Systems, Kookmin University) ;
  • Chun, Yongwoo (Department of Forestry, Environment, and Systems, Kookmin University)
  • 정준모 (국립산림과학원 산림생산기술연구소) ;
  • 김현섭 (국립산림과학원 산림생산기술연구소) ;
  • 김미숙 (국민대학교 산림환경시스템학과) ;
  • 전영우 (국민대학교 산림환경시스템학과)
  • Received : 2016.10.13
  • Accepted : 2017.02.09
  • Published : 2017.03.31

Abstract

This study was conducted to analyze the relationship among climatic factors and radial growth of Pinus densiflora and Larix kaempferi in South Korea. To determine the climate-growth relationship, cluster analysis was applied to group surveyed regions by the climatical similarity, and a dendroclimatological model was developed to predict radial growth for each climate group under the RCP 4.5 and RCP 8.5 scenarios for greenhouse gases. The cluster analysis showed four climatic clusters (Cluster 1~4) from 10 regions for P. densiflora and L. kaempferi. The dendroclimatological model was developed through climatic variables and standardized residual chronology for each climatic cluster of P. densiflora and L. kaempferi. Four climatic variables were used in the models for P. densiflora ($R^2$ values between 0.38 to 0.58). Two to five climatic variables were used in the models for L. kaempferi ($R^2$ values between 0.31 to 0.43). The growth simulations with two RCP climate-change scenarios(RCP 4.5 and RCP 8.5) were used for growth prediction. The radial growth of the Cluster 4 of P. densiflora, the mountainous region at high elevation, tend to increase, while those of cluster 2 and 3 of P. densiflora, the region of the hightest average temperature, tends to decrease. The radial growth of the Cluster 1 of L. kaempferi the region of the lowest minimum temperature, while that of Cluster 2, the region of the highest average temperature, tends to decrease. The radial growth of Cluster 3 of L. kaempferi, the region in the east coast and Cluster 4, the region at high elevation, tends to hold steady. The results of this study are expected to provide valuable information necessary for predicting changes in radial growth of Pinus densiflora and Larix kaempferi caused by climate change.

본 연구는 소나무(Pinus densiflora)와 일본잎갈나무(Larix kaempferi)의 연륜생장과 기후 요소와의 관계를 분석하고, 각 수종별 연구지역을 기후군집으로 분류하여 군집별 연륜기후학적 모델을 개발하였다. 또한 기후변화에 따른 연륜생장 변화를 RCP 기후변화 시나리오와 연륜기후학적 모델을 이용하여 예측하였다. 군집분석을 통한 소나무와 일본잎갈나무의 기후군집은 각각 4개로 분류되었다. 각 군집별 연륜기후학적 모델은 단계적 회귀분석으로 표준화된 잔차연대기와 군집별 기후변수를 이용하여 작성하였다. 소나무의 연륜기후학적 모델에는 각 4개씩의 기후변수가 사용되었고 $R^2$는 0.38~0.58로 나타났다. 일본잎갈나무 연륜기후학적 모델에는 2~5개의 기후변수가 사용되었고 $R^2$는 0.31~0.43으로 분석되었다. 수종별 연륜생장변화 예측은 RCP 4.5와 RCP 8.5 두 개의 기후변화 시나리오를 이용하였다. 소나무 기후군집별 연륜생장예측은 백두대간 산악지역인 군집 4에서 연륜생장이 증가하였고 평균기온이 높은 군집 2와 군집 3에서는 연륜생장이 감소하였다. 일본잎갈나무는 월평균 최저기온이 낮은 군집 1과 평균기온이 높은 군집 2에서는 기후변화가 진행됨에 따라 연륜생장이 감소하였고, 동부해안지역인 군집 3과 해발고가 높은 지역인 군집 4에서는 연륜생장이 유지되었다. 본 연구의 결과는 소나무와 일본잎갈나무의 기후변화에 따른 연륜생장의 변화 예측에 필요한 유용한 정보로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Arabatzis, A.A. and Burkhart, H.E. 1992. An evaluation of sampling methods and model forms for estimating height-diameter relation-ships in loblloly pine plantations. Forest Science 38(1): 192-198.
  2. Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. 1994. Time series analysis - forecasting and control. Prentice Hall, Englewood Cliffs. New Jersey, U.S.A. pp. 297.
  3. Cha, G.S. 1998. Estimation of changes in potential forest area under climate change. Journal of Korean Forest Society 87(3): 358-365.
  4. Chun, J.H. 2012. Assessing the Effects of Climate Change on the Geographic Distribution of Major Tree Species in Korea using Ecological Niche Model. Kookmin University. Seoul, Korea. pp. 190.
  5. Chung, J.M., Kim, H.S., Lee, S.T., Lee, K.J., Kim, M.S. and Chun, Y.W. 2015. Correlation analysis and growth prediction between climatic elements and radial growth for Pinus koraiensis. Korean Journal of Agricultural and Forest Meteorology 17(2): 85-92. https://doi.org/10.5532/KJAFM.2015.17.2.85
  6. Cook, E.R. and Holmes, R.L. 1986. Users Manual for program ASTAN. University of Arizona. Arizona, U.S.A. pp. 182.
  7. Cook, E.R. and Kairiukstis, L.A. 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers. Dordrecht, Netherlands. pp. 394.
  8. Fritts, H.C. 1976. Tree Rings and Climate. Academic Press. New York, U.S.A. pp. 567.
  9. IPCC. 2007. Climate Change 2007: Synthesis Report. IPCC Fourth Assessment Report. Geneva, Switzerland. pp. 104.
  10. Kim, J.U. and Kil, B.S. 1996. Estimation for changes of net primary productivity and potential natural vegetation in the Korean peninsula by the global warming. Journal of Ecology and Environment 19(1): 1-7.
  11. Koo, K.A., Park, W.K. and Kong, W.S. 2001. Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: Effects of climate change on the growths. Jounal of Ecology and Environment 24(5): 281-288.
  12. Korea Meteorological Administration. 2011. Case studies to understand and take advantage of climate change scenarios. Korea Meteorological Administration. Seoul, Korea. pp. 44.
  13. Laroque, C.P. and Smith, D.J. 2005. Predicted short-term radial-growth changes of trees based on past climate on Vancouber Island, British Columbia. Dendrochronologia 22: 163-168. https://doi.org/10.1016/j.dendro.2005.04.003
  14. Louis, De Grandpre, Tardif, J.C., Hessl, A., Pederson, N., Conciatori, F., Green, T., Oyunsanaa, B. and Baatarbileg, N. 2011. Seasonal shift in the climate responses of Pinus sibirica, Pinus sylvestris, and Larix sibirica trees from semi-arid, north-centrial Mongolia. Canadian Journal of Forest Research 41(6): 1242-1255. https://doi.org/10.1139/x11-051
  15. Seo, J.W. 1999. Spatiotemporal Analysis of Tree-Ring Variations in Pinus densiflora from Mt. Worak, Central Korea, Chungbuk National University Cheongju, Korea. pp. 59.
  16. Seo, J.W., Kim, J.S. and Park, W.K. 2000. Analysis of heterogeneous tree-ring growths of Pinus densiflora with various topographical characterisitecs in Mt. Worak using GIS. Journal of Ecology and Environment 23(1): 25-32.
  17. Shin, M.Y. 1990. The use of ridge regression of yield prediction models with multicollinearty problems. Journal of Korean Forest Society 79(3): 260-268.
  18. Shin, M.Y, Yun, J.W. and Cha, D.S. 1996. Local correlation of tree volume equation for Larix leptolepis by ratio of means estimator. Journal of Korean Forest Society 85(1): 56-65.
  19. Speer, J.H. 2010. Fundamentals of tree-ring research. University of Arizona Press. Arizona, U.S.A. pp. 368.
  20. Spiecker, H. 2002. Tree rings and forest management in Europe. Dendrochronologia 20(1-2): 191-202. https://doi.org/10.1078/1125-7865-00016
  21. Wigley, T.M.L., Briffa, K.R. and Jones, P.D. 1984. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201-213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

Cited by

  1. 국내 일본잎갈나무림의 자원량 및 목재생산 잠재량 분석 vol.109, pp.4, 2020, https://doi.org/10.14578/jkfs.2020.109.4.454