DOI QR코드

DOI QR Code

An Experimental Study on the Effect of Reduced Slag and Gypsum on Concrete at Low Temperature(-5℃)

저온(-5℃)에서의 환원슬래그 및 석고가 콘크리트에 미치는 영향에 관한 실험적 연구

  • Received : 2017.04.17
  • Accepted : 2017.06.14
  • Published : 2017.06.20

Abstract

In this study, the development of concrete preventing initial frost damage and durability about that were evaluated by using anti-aging agent and admixture(reduced slag). As a result of experiment, initial hydration heat was increased by $C_{12}A_7$ of reduced slag components but it was not effective to development of strength. Also fluidity decreased with increasing replacement of reduced slag. This suggested that fluidity was low by rapid setting due to absent of gypsum in reduced slag components. In case of CR2G specimen that added 4% gypsum, the flow ability was higher than plain. It is considered that concrete developed using reduced slag should use $SO_3$. Result of durability experiments, the durability decreased with increasing replacement amount of reduced slag.

본 연구는 수화반응시 발열량이 높은 혼화재(환원슬래그)와 환원슬래그의 수화반응 촉진제로서 사용된 석고를 사용하여 $-5^{\circ}C$이상에서 초기동해를 방지할 수 있는 콘크리트의 개발과 그에 대한 내구성을 평가, 그리고 석고가 콘크리트의 물리적특성에 미치는 영향에 대해 실험을 실시하였다. 실험결과 환원슬래그를 구성하는 주성분중 $C_{12}A_7$에 의하여 초기 수화열이 증가하였으나 강도증진에는 효과가 없는 것으로 판단되었으며 환원슬래그의 혼입량이 증가함에 따라 유동성은 저하되는 것으로 나타났다. 이는 치환된 환원슬래그에 $SO_3$의 성분이 없기 때문에 급결로 인하여 유동성이 낮게 나타는 것으로 사료된다. 또한 석고가 4% 첨가된 CR2G의 실험체의 경우는 Plain실험체 비해 유동성이 확보되는 것으로 나타났다. 또한 환원슬래그를 사용하여 개발된 콘크리트는 적절한 $SO_3$를 필히 사용해야 할 것으로 사료된다. 내구성 평가결과 환원슬래그의 사용량이 증가함에 따라 내구성은 저헝력은 감소하는 것으로 나타났다.

Keywords

References

  1. Lee SS. A study on the improvement of strength delay according to low temperature of cold weather concrete. Journal of the Korean Recycled Construction Resources institute. 2012 Mar; 7(1):51-9.
  2. Won C, Park SJ, Lee SS. A site application of winter concrete using freezing protection accelerator. Journal of the Korea Concrete institute. 2006 Nov;18(6):38-45.
  3. Kim YJ, Lee SS, Won C, Park SJ. Strength properties of mortar mixed with accelerator for freeze protection in constant and variable temperature condition. Journal of the Korea Concrete institute. 2002 Dec;16(6):942-8.
  4. Cho HW, Shin HS, Lee JH. Development ultra rapid hardening construction materials on cold weather environment considering curing temperature. Journal of the Korea Institute for Structural Maintenance and Inspection. 2013 Sep;17(5):59-66. https://doi.org/10.11112/jksmi.2013.17.5.059
  5. Lim CK, Han MC. Curing and mixture design of cold weather concrete applying heat insulation and heat supplying curing. Journal of the Architectural Institute of Korea. 2010 Jun; 26(6):77-84.
  6. Bullard JW, Jennings HM, Livingston RH, Nonat A, Scherer GW, Schweitzer JS, Scrivenner KL, Thomas JJ. Mechanisms of cement hydration. Cement and Concrete Research. 2011 Dec;41(12):1208-23. https://doi.org/10.1016/j.cemconres.2010.09.011
  7. Min TB, Mun YB, Kim HC, Choi HK, Kim JY, Lee HS. Fundamental experiment on preventing frost damage at early age of mortar in low temperature using reduction slag. Journal of the Korea Institute of Building Construction. 2016 Feb;16(1):3-8.
  8. Kim HC, Min TB, Mun YB, Kim JY, Kim HK, Lee HS. Effect of high early strength cement and accelerator concentrations on the low-temperature compressive strength of concrete. Journal of Ceramic Processing Research. 2016 Jun;17(6):641-47.
  9. KA MA. Microstructure of cement hardened body and freezing of concrete, Concrete engineering, apan Concrete Institute of Technology. 1981 Jun;19(11):36-42.
  10. Koh KT, Ryu GS. Structural engineering & bridge research division, Korea institute of construction technology. Journal of the Recycled Construction Resources Institute. 2011 sep;79-87.