References
- J. Zhang, Y. Zhang, Z. Pan, S. Yang, J. Shi, S. Li, D. Min, X. Li, X. Wang, D. Liu, and A. Yang, Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes, Appl. Phys. Lett., 107, 093104 (2015). https://doi.org/10.1063/1.4930020
- G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, and J. Kim, Graphene-based nitrogen dioxide gas sensors, Curr. Appl. Phys., 10, 1002-1004 (2010). https://doi.org/10.1016/j.cap.2009.12.024
- M.-J. Jung, M.-S. Park, S. Lee, and Y.-S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016). https://doi.org/10.14478/ace.2016.1042
-
J. G. Kim, S. C. Kang, E. Shin, D. Y. Kim, J. H. Lee, and Y.-S. Lee,
$CO_2$ Sensing characteriestics of carbon-nanofibers based on effects of porosity and amine functional group, Appl. Chem. Eng., 23, 47-52 (2012). - G. Lu, L. E. Ocola, and J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes, Adv. Mater., 21, 2487-2491 (2009). https://doi.org/10.1002/adma.200803536
- C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10, 2088-2106 (2010). https://doi.org/10.3390/s100302088
- J. S. Im, S. C. Kang, S.-H. Lee, and Y.-S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
- S. C. Kang, J. S. Im, S.-H. Lee, T.-S. Bae, and Y.-S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011). https://doi.org/10.1016/j.colsurfa.2011.04.001
- S. C. Kang, J. S. Im, and Y.-S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt Catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
- S.-H. Kim, Y.-J. Noh, S.-N. Kwon, B.-N. Kim, B.-C. Lee, S.-Y. Yang, C.-H. Jung and S.-I. Na, Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells, J. Ind. Eng. Chem., 26, 210-213 (2015). https://doi.org/10.1016/j.jiec.2014.11.031
- N. Benbettaieb, T. Karbowiak, C. H. Brachais, and F. Debeaufort, Impact of electron beam irradiation on fish gelatin film properties, Food Chem., 195, 11-18 (2016). https://doi.org/10.1016/j.foodchem.2015.03.034
-
X. Sui, Z. Xu, C. Hu, L. Chen, L. Liu, L. Kuang, M. Ma, L. Zhao, J. Li, and H. Deng, Microstructure evolution in
${\gamma}$ -irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section, Compos. Sci. Technol., 130, 46-52 (2016). https://doi.org/10.1016/j.compscitech.2016.05.001 - J. G. Kim, C. H. Chung, and Y.-S. Lee, The effect of crystallization by heat treatment on electromagnetic interference shielding efficiency of carbon fibers, Appl. Chem. Eng., 22, 138-143 (2011).
- J.-S. Roh, Structural study of the activated carbon fiber using laser raman spectroscopy, Carbon Lett., 9, 127-130 (2008). https://doi.org/10.5714/CL.2008.9.2.127
- N. Shimodaira and A. Masui, Raman spectroscopic investigations of activated carbon materials, J. Appl. Phys., 92, 902-909 (2002). https://doi.org/10.1063/1.1487434
- M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1276-1291 (2007). https://doi.org/10.1039/B613962K
- N. Hu, Y. Wang, J. Chai, R. Gao, Z. Yang, E. S.-W. Kong, and Y. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide, Sens. Actuators B, 163, 107-114 (2012). https://doi.org/10.1016/j.snb.2012.01.016
- J. G. Kim, J. S. Im, T.-S. Bae, J. H. Kim, and Y.-S. Lee, The electrochemical behavior of an enzyme biosensor electrode using an oxyfluorinated pitch-based carbon, J. Ind. Eng. Chem., 19, 94-98 (2013). https://doi.org/10.1016/j.jiec.2012.07.008
- Y. Talukdar, J. T. Rashkow, G. Lalwani, S. Kanakia, and B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells, Biomaterials, 35, 4863-4877 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.054
-
J. Shangguan, C.-H. Li, M.-Q. Miao, and Z. Yang, Surface characterization and
$SO_2$ removal activity of activated semi-coke with heat treatment, New Carbon Mater., 23, 37-43 (2008). https://doi.org/10.1016/S1872-5805(08)60011-6 - M.-J. Jung, M.-S. Park, and Y.-S. Lee, Effects of E-Beam irradiation on the chemical, physical, and electrochemical properties of activated carbons for electric double-layer capacitors, J. Nanomater., 2015, 1-8 (2015).
- S. Gupta, R. J. Patel, N. Smith, R. E. Giedd, and D. Hui, Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes, Diam. Relat. Mater., 16, 236-242 (2007). https://doi.org/10.1016/j.diamond.2006.05.009
- B. H. Kim, D. H. Lee, K. S. Yang, B. C. Lee, Y. A. Kim, and M. Endo, Electron beam irradiation-enhanced wettability of carbon fibers, Appl. Mater. Interfaces, 3, 119-123 (2011). https://doi.org/10.1021/am101064s
- Y. Nishi, A. Mizutani, and N. Uchida, electron beam strengthening for carbon fiber-reinforced composite materials, J. Thermoplast. Compos. Mater., 17, 289-302 (2004). https://doi.org/10.1177/0892705704045095
-
S.-H. Hwang, H.-S. Park, D.-W. Kim, and Y.-M. Jo, Preparation of activated carbon fiber adsorbent for enhancement of
$CO_2$ capture capacity, J. Korean Soc. Atmos. Environ., 31, 538-547 (2015). https://doi.org/10.5572/KOSAE.2015.31.6.538 - M. C. Evora, D. Klosterman, K. Lafdi, L. Li, and J. L. Abot, Functionalization of carbon nanofibers through electron beam irra diation, Carbon, 48, 2037-2046 (2010). https://doi.org/10.1016/j.carbon.2010.02.012
- M. C. Evora, D. Klosterman, K. Lafdi, L. Li, and L. G. A. Silva, Study of an alternative process for oxidizing vapor grown carbon nanofibers using electron beam accelerators, Radiat. Phys. Chem., 84, 105-110 (2013). https://doi.org/10.1016/j.radphyschem.2012.06.036
- S. Abdulla, T. L. Mathew, and B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection, Sens. Actuators B, 221, 1523-1534 (2015). https://doi.org/10.1016/j.snb.2015.08.002
- J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano, 3, 301-306 (2009). https://doi.org/10.1021/nn800593m
-
W.-S. Cho, S.-I. Moon, K.-K. Paek, Y.-H. Lee, J.-H. Park, and B.-K. Ju, Patterned multiwall carbon nanotube films as materials of
$NO_2$ gas sensors, Sens. Actuators B, 119, 180-185 (2006). https://doi.org/10.1016/j.snb.2005.12.004 -
N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature
$NH_3$ gas sensors based on chemically reduced graphene oxide, Nanotechnology, 25, 025502 (2014). https://doi.org/10.1088/0957-4484/25/2/025502