DOI QR코드

DOI QR Code

Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam

전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성

  • Lee, Sangmin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jung, Min-Jung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Kyeong Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이상민 (충남대학교 응용화학공학과) ;
  • 정민정 (충남대학교 응용화학공학과) ;
  • 이경민 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2017.02.25
  • Accepted : 2017.03.22
  • Published : 2017.06.10

Abstract

Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and $sp^2$ bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the $sp^2$ carbon bond increased by E-beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.

활성탄소섬유가 전사선 조사에 의해 표면 개질되었고, NO가스 감지 능력에 미치는 영향을 살펴보기 위하여 이를 가스센서 전극으로 이용하였다. XPS 분석결과는 전자선에 의하여 표면처리된 활성탄소섬유의 산소 성분이 감소하였으며 표면의 $sp^2$ 결합탄소가 증가한 것을 보여주었다. 이러한 결과는 전자빔 조사에 따른 활성탄소섬유 표면의 구조적 변형때문으로 사료된다. 100 kGy의 전자빔이 조사된 활성탄소섬유 전극의 NO가스 민감도는 약 4%에서 약 8%로 크게 증가하였고, 그 감지 시간 또한 약 360 s에서 120 s로 의미 있게 향상되었다. 이러한 결과는 활성탄소섬유의 전자빔 조사에 의하여 $sp^2$ 탄소 결합의 증가때문에 기인한 것으로, 이는 NO가스 센싱에 대한 전극저항 변화에 상당히 영향을 주었다.

Keywords

References

  1. J. Zhang, Y. Zhang, Z. Pan, S. Yang, J. Shi, S. Li, D. Min, X. Li, X. Wang, D. Liu, and A. Yang, Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes, Appl. Phys. Lett., 107, 093104 (2015). https://doi.org/10.1063/1.4930020
  2. G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, and J. Kim, Graphene-based nitrogen dioxide gas sensors, Curr. Appl. Phys., 10, 1002-1004 (2010). https://doi.org/10.1016/j.cap.2009.12.024
  3. M.-J. Jung, M.-S. Park, S. Lee, and Y.-S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016). https://doi.org/10.14478/ace.2016.1042
  4. J. G. Kim, S. C. Kang, E. Shin, D. Y. Kim, J. H. Lee, and Y.-S. Lee, $CO_2$ Sensing characteriestics of carbon-nanofibers based on effects of porosity and amine functional group, Appl. Chem. Eng., 23, 47-52 (2012).
  5. G. Lu, L. E. Ocola, and J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes, Adv. Mater., 21, 2487-2491 (2009). https://doi.org/10.1002/adma.200803536
  6. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10, 2088-2106 (2010). https://doi.org/10.3390/s100302088
  7. J. S. Im, S. C. Kang, S.-H. Lee, and Y.-S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  8. S. C. Kang, J. S. Im, S.-H. Lee, T.-S. Bae, and Y.-S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011). https://doi.org/10.1016/j.colsurfa.2011.04.001
  9. S. C. Kang, J. S. Im, and Y.-S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt Catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
  10. S.-H. Kim, Y.-J. Noh, S.-N. Kwon, B.-N. Kim, B.-C. Lee, S.-Y. Yang, C.-H. Jung and S.-I. Na, Efficient modification of transparent graphene electrodes by electron beam irradiation for organic solar cells, J. Ind. Eng. Chem., 26, 210-213 (2015). https://doi.org/10.1016/j.jiec.2014.11.031
  11. N. Benbettaieb, T. Karbowiak, C. H. Brachais, and F. Debeaufort, Impact of electron beam irradiation on fish gelatin film properties, Food Chem., 195, 11-18 (2016). https://doi.org/10.1016/j.foodchem.2015.03.034
  12. X. Sui, Z. Xu, C. Hu, L. Chen, L. Liu, L. Kuang, M. Ma, L. Zhao, J. Li, and H. Deng, Microstructure evolution in ${\gamma}$-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section, Compos. Sci. Technol., 130, 46-52 (2016). https://doi.org/10.1016/j.compscitech.2016.05.001
  13. J. G. Kim, C. H. Chung, and Y.-S. Lee, The effect of crystallization by heat treatment on electromagnetic interference shielding efficiency of carbon fibers, Appl. Chem. Eng., 22, 138-143 (2011).
  14. J.-S. Roh, Structural study of the activated carbon fiber using laser raman spectroscopy, Carbon Lett., 9, 127-130 (2008). https://doi.org/10.5714/CL.2008.9.2.127
  15. N. Shimodaira and A. Masui, Raman spectroscopic investigations of activated carbon materials, J. Appl. Phys., 92, 902-909 (2002). https://doi.org/10.1063/1.1487434
  16. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1276-1291 (2007). https://doi.org/10.1039/B613962K
  17. N. Hu, Y. Wang, J. Chai, R. Gao, Z. Yang, E. S.-W. Kong, and Y. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide, Sens. Actuators B, 163, 107-114 (2012). https://doi.org/10.1016/j.snb.2012.01.016
  18. J. G. Kim, J. S. Im, T.-S. Bae, J. H. Kim, and Y.-S. Lee, The electrochemical behavior of an enzyme biosensor electrode using an oxyfluorinated pitch-based carbon, J. Ind. Eng. Chem., 19, 94-98 (2013). https://doi.org/10.1016/j.jiec.2012.07.008
  19. Y. Talukdar, J. T. Rashkow, G. Lalwani, S. Kanakia, and B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells, Biomaterials, 35, 4863-4877 (2014). https://doi.org/10.1016/j.biomaterials.2014.02.054
  20. J. Shangguan, C.-H. Li, M.-Q. Miao, and Z. Yang, Surface characterization and $SO_2$ removal activity of activated semi-coke with heat treatment, New Carbon Mater., 23, 37-43 (2008). https://doi.org/10.1016/S1872-5805(08)60011-6
  21. M.-J. Jung, M.-S. Park, and Y.-S. Lee, Effects of E-Beam irradiation on the chemical, physical, and electrochemical properties of activated carbons for electric double-layer capacitors, J. Nanomater., 2015, 1-8 (2015).
  22. S. Gupta, R. J. Patel, N. Smith, R. E. Giedd, and D. Hui, Room temperature dc electrical conductivity studies of electron-beam irradiated carbon nanotubes, Diam. Relat. Mater., 16, 236-242 (2007). https://doi.org/10.1016/j.diamond.2006.05.009
  23. B. H. Kim, D. H. Lee, K. S. Yang, B. C. Lee, Y. A. Kim, and M. Endo, Electron beam irradiation-enhanced wettability of carbon fibers, Appl. Mater. Interfaces, 3, 119-123 (2011). https://doi.org/10.1021/am101064s
  24. Y. Nishi, A. Mizutani, and N. Uchida, electron beam strengthening for carbon fiber-reinforced composite materials, J. Thermoplast. Compos. Mater., 17, 289-302 (2004). https://doi.org/10.1177/0892705704045095
  25. S.-H. Hwang, H.-S. Park, D.-W. Kim, and Y.-M. Jo, Preparation of activated carbon fiber adsorbent for enhancement of $CO_2$ capture capacity, J. Korean Soc. Atmos. Environ., 31, 538-547 (2015). https://doi.org/10.5572/KOSAE.2015.31.6.538
  26. M. C. Evora, D. Klosterman, K. Lafdi, L. Li, and J. L. Abot, Functionalization of carbon nanofibers through electron beam irra diation, Carbon, 48, 2037-2046 (2010). https://doi.org/10.1016/j.carbon.2010.02.012
  27. M. C. Evora, D. Klosterman, K. Lafdi, L. Li, and L. G. A. Silva, Study of an alternative process for oxidizing vapor grown carbon nanofibers using electron beam accelerators, Radiat. Phys. Chem., 84, 105-110 (2013). https://doi.org/10.1016/j.radphyschem.2012.06.036
  28. S. Abdulla, T. L. Mathew, and B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection, Sens. Actuators B, 221, 1523-1534 (2015). https://doi.org/10.1016/j.snb.2015.08.002
  29. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Practical chemical sensors from chemically derived graphene, ACS Nano, 3, 301-306 (2009). https://doi.org/10.1021/nn800593m
  30. W.-S. Cho, S.-I. Moon, K.-K. Paek, Y.-H. Lee, J.-H. Park, and B.-K. Ju, Patterned multiwall carbon nanotube films as materials of $NO_2$ gas sensors, Sens. Actuators B, 119, 180-185 (2006). https://doi.org/10.1016/j.snb.2005.12.004
  31. N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature $NH_3$ gas sensors based on chemically reduced graphene oxide, Nanotechnology, 25, 025502 (2014). https://doi.org/10.1088/0957-4484/25/2/025502