DOI QR코드

DOI QR Code

The Selective Catalytic Oxidation of Ammonia: Effect of Physicochemical Properties on Pt/TiO2

Pt/TiO2 촉매의 물리화학적 특성이 NH3-SCO 반응활성에 미치는 영향

  • Shin, Jung Hun (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Dong Ho (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김동호 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2016.11.28
  • Accepted : 2017.01.01
  • Published : 2017.06.10

Abstract

In this study, the study of the selective catalytic oxidation (SCO) for controlling the $NH_3$ at $200{\sim}350^{\circ}C$ range was investigated. Physicochemical properties of the catalysts were determined using XRD and XPS analysis. In the case of catalytic activity according to thermal treatment condition, the reduction catalyst showed better activity than that of using the calcination catalyst. It was confirmed that the valence state of reduction catalyst was mainly $Pt^{2+}$ and $Pt^0$ as analyzed by XPS. Also, when comparing the reaction activities of $Pt/TiO_2$ catalysts according to the reduction temperature, the $NH_3$ conversion of the catalyst reduced at $700^{\circ}C$ showed the most excellent activity. However, the best activity of $NH_3$ conversion to $N_2$ was obtained for the catalyst reduced at $600^{\circ}C$.

본 연구에서는 $200{\sim}350^{\circ}C$의 범위에서 $NH_3$를 제어하기 위한 선택적 촉매 산화법(SCO)의 연구를 수행하였다. 제조된 촉매들의 물리화학적 특성을 확인하기 위하여 XRD, XPS 분석을 수행하였다. 열처리 조건에 따른 촉매의 반응활성은 수소로 환원시킨 촉매가 소성한 촉매보다 우수한 활성을 나타냈으며, XPS 분석을 통하여 환원촉매의 산화가 비율은 주로 $Pt^{2+}$$Pt^0$가 존재하는 것을 확인할 수 있었다. 또한 환원온도에 따른 $Pt/TiO_2$ 촉매의 반응활성을 비교해본 결과 $700^{\circ}C$에서 환원한 촉매가 가장 우수한 $NH_3$ 전환율을 나타냈으나, $N_2$로의 전환율은 $600^{\circ}C$에서 환원한 촉매가 가장 우수한 것을 확인하였다.

Keywords

References

  1. L. Gang, B. G. Anderson, J. V. Grondelle, R. A. V. Santen, W. J. H. van Gennip, J. W. Niemantsverdriet, P. J. Kooyman, A. Knoester, and H. H. Brongersma, Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature, J. Catal., 206, 60-70 (2002). https://doi.org/10.1006/jcat.2001.3470
  2. M. Amblard, R. Burch, and B. W. L Southward, The selective conversion of ammonia to nitrogen on metal oxide catalysts under strongly oxidising conditions, Appl. Catal. B, 22, 159-166 (1999). https://doi.org/10.1016/S0926-3373(99)00048-X
  3. J. Y. Lee, S. B. Kim, and S. C. Hong, Characterization and reactivity of natural manganese ore catalysts in the selective catalytic oxidation of ammonia to nitrogen, Chemosphere, 50, 1115-1122 (2003). https://doi.org/10.1016/S0045-6535(02)00708-7
  4. M. J. Lippits, A. C. Gluhoi, and B. E. Nieuwenhuys, A comparative study of the selective oxidation of $NH_3$ to $N_2$ over gold, silver and copper catalysts and the effect of addition of $Li_2O$ and $CeO_x$, Catal. Today, 137, 446-452 (2008). https://doi.org/10.1016/j.cattod.2007.11.021
  5. S. A. C. Carabineiro, A. V. Matveev, V. V. Gorodetskii, and B. E. Nieuwenhuys, Selective oxidation of ammonia over Ru(0001), Surf. Sci., 555, 83-93 (2004). https://doi.org/10.1016/j.susc.2004.02.022
  6. R. Q. Long and R. T. Yang, Selective catalytic oxidation of ammonia to nitrogen over $Fe_2O_3-TiO_2$ prepared with a sol-gel method, J. Catal., 207, 158-165 (2002). https://doi.org/10.1006/jcat.2002.3545
  7. N. I. Il'chenko, Catalytic oxidation of ammonia, Russ. Chem. Rev., 45, 1119-1134 (1976). https://doi.org/10.1070/RC1976v045n12ABEH002765
  8. O. V. Al'tshuler, O. M. Vinogradova, and V. A. Seleznev, Catalysis of oxidation reactions by zeolites containing transition metal cations, Probl. Kinet. Catal., 15, 56-64 (1973).
  9. A. Wollner, F. Lange, H. Schmeltz, and H. Knozinger, Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia, Appl. Catal. A, 94, 181-203 (1993). https://doi.org/10.1016/0926-860X(93)85007-C
  10. M. R. Bankmann, R. Brand, B. H. Enger, and J. Ohmer, Forming of high surface area $TiO_2$ to catalyst support, Catal. Today, 14, 225-242 (1992). https://doi.org/10.1016/0920-5861(92)80025-I
  11. V. A. Kondratenko and M. Baerns, Evolution, achievements, and perspectives of the TAP technique, Catal. Today, 121, 160-169 (2007). https://doi.org/10.1016/j.cattod.2007.01.001
  12. B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, and J. Volta, Structural characterization of $CeO_2$-$TiO_2$ and $V2O_5/CeO_2-TiO_2$ catalysts by Raman and XPS techniques, J. Phys. Chem., 107, 5162-5167 (2003). https://doi.org/10.1021/jp0344601
  13. S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/$TiO_2$ catalyst, Appl. Catal. A, 398, 96-103 (2011). https://doi.org/10.1016/j.apcata.2011.03.018
  14. H. Huang and D. Y. C. Leung, complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature, J. Catal., 280, 60-70 (2011). https://doi.org/10.1016/j.jcat.2011.03.003
  15. G. J. Kim, D. W. Kwon, and S. C. Hong, Effect of Pt particle size and valence state on the performance of Pt/TiO2 Catalysts for CO oxidation at room temperature, J. Chem. Eng. Jpn., 120, 17996-18004 (2016).
  16. M. A. Aramendia, J. C. Colmenares, A. Marinas, J. M. Marinas, J. M. Moreno, J. A. Navio, and F. J. Urbano, Effect of the redox treatment of Pt/$TiO_2$ system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol, Catal. Today, 128, 235-244 (2006).
  17. M. Abid, V. Paul-Boncour, and R. Touroude, Pt/$CeO_2$ catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states, Appl. Catal. A, 297, 48-59 (2006). https://doi.org/10.1016/j.apcata.2005.08.048