DOI QR코드

DOI QR Code

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane

자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증

  • Lee, Eun Ju (Department of Chemical Engineering, Daegu University) ;
  • Lee, Jong Hoon (Department of Chemical Engineering, Daegu University) ;
  • Lim, Kwang-Hee (Department of Chemical Engineering, Daegu University)
  • Received : 2017.04.21
  • Accepted : 2017.05.22
  • Published : 2017.06.01

Abstract

In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

자가치유성을 갖는 고분자개질 빙수아스팔트-몬모릴로나이트(MMT) composite 제조를 위하여 양이온($Na^+$)교환 처리된 K-10 (Na-MMT-K)에 대한 3-aminopropyltriethoxysilane (APS) 개질의 특성을 규명하고 적정개질조건을 FTIR, XRD, NMR 및 TGA 등의 분석을 통하여 제시되었다. APS 개질된 Na-MMT-K (S-Na-MMT-K)에 대한 FTIR 분석에서 실란화 반응과 관련된 실록산 결합(Si-O), 아민기, -$CH_2$- 및 -OH 기의 피크의 세기를 비교하였다. 그 결과로서 적정 반응시간, 적정교반시간, 적정농도 및 적정반응온도는 각각 2~3 h, 20 min, 7.5 w/v% 및 $50^{\circ}C$가 도출되었다. 또한 TGA 결과로부터 도출된 적정개질조건도 FTIR 분석에서 도출한 적정개질조건과 거의 일치하였다. 이 도출된 적정개질조건들은 Lee 등의 XRD 분석에서 제시된 기준(criterion)에 의해 도출된 적정반응시간, 적정교반시간, 적정 APS농도 및 적정반응온도와 거의 일치하였다. 따라서 XRD 분석에서 제시된 기준(criterion)이 검증되었다.

Keywords

References

  1. Zulfiqar, S., Kausar, A., Rizwan, M. and Sarwar, M. I., "Probing the Role of Surface Treated Montmorillonite on the Properties of Semi-aromatic Polyamide/clay Nanocomposites," Appl. Surf. Sci., 255, 2080-2086(2008). https://doi.org/10.1016/j.apsusc.2008.06.184
  2. Pavlidou, S. and Papaspyrides, C. D., "A Review on Polymer-layered Silicate Nanocomposites," Prog. Polym. Sci., 33, 1119-1198 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.008
  3. Bergaya, F. and Lagaly, G., "Surface Modification of Clay Minerals," Appl. Clay Sci., 19, 1-3(2001). https://doi.org/10.1016/S0169-1317(01)00063-1
  4. Paiva, L. B., Morales, A. R. and Díaz, F. R. V., "Organoclays: Properties, Preparation and Applications," Appl. Clay Sci., 42, 8-24 (2008). https://doi.org/10.1016/j.clay.2008.02.006
  5. Frost, R. L., He, H., Xi, Y., Kloprogge, J. T., Zhou, Q., Martens, W. N. and Yuan, P., "Microstructure of $HDTMA^+$ Modified Montmorillonite and its Influence on Sorption Characteristics," Clays and Clay Minerals, 54(6), 689-696(2006). https://doi.org/10.1346/CCMN.2006.0540604
  6. Bandpei, A. M., Mohseni, S. M., Sheikhmohammadi, A., Sardar, M., Sarkhosh, M., Almasian, M., Avazpour, M., Mosallanejad, Z., Atafar, Z., Nazari, S. and Rezaei, S., "Optimization of Arsenite Removal by Adsorption onto Organically Modified Montmorillonite Clay: Experimental & Theoretical Approaches," Korean J. Chem. Eng., 34(2), 376-383(2017). https://doi.org/10.1007/s11814-016-0287-z
  7. Kim, S. W., "Preparation and Characteristics of Biodegradable Polyurethane/clay Nanocomposite Films," Korean Chem. Eng. Res., 51(3), 382-387(2013). https://doi.org/10.9713/kcer.2013.51.3.382
  8. Ray, S. S. and Okamoto, M., "Polymer/layered Silicate Nanocomposites: a Review from Preparation to Processing," Progress in Polymer Science, 28, 1539-1641(2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  9. Bikiaris, D., "Can Nanoparticles Really Enhance Thermal Stability of Polymers? Part II: An Overview on Thermal Decomposition of Polycondensation Polymers," Thermochim. Acta 523, 25- 45(2011). https://doi.org/10.1016/j.tca.2011.06.012
  10. Wang, J., Zheng, X., Hao,W., Xu, N. and Pan, X., "Synthesis of Hyper-branched Quaternary Ammonium Salt and its Application Into Montmorillonite," Powder Technol., 221, 80-89(2012). https://doi.org/10.1016/j.powtec.2011.11.006
  11. Xie, W., Xie, R., Pan, W. P., Hunter, D., Koene, B., Tan, L. S. and Vaia, R., "Thermal Stability of Quaternary Phosphonium Modified Montmorillonite," Chem. Mater., 14, 4837-4845(2002). https://doi.org/10.1021/cm020705v
  12. He, H., Duchet, J., Galy, J. and Gerard, J. F., "Grafting of Swelling Clay Materials with 3-aminopropyltriethoxysilane," Journal of Colloid and Interface Science, 288, 171-176(2005). https://doi.org/10.1016/j.jcis.2005.02.092
  13. Avila, L. R., de Faria, E. H., Ciuffi, K. J., Nassar, E. J., Calefi, P. S., Vicente, M. A. and Trujillano, R., "New Synthesis Strategies for Effective Functionalization of Kaolinite and Saponite with Silylating Agents," Journal of Colloid and Interface Science 341, 186-193(2010). https://doi.org/10.1016/j.jcis.2009.08.041
  14. Guimarães, A. M. F., Ciminelli, V. S. T. and Vasconcelos, W. L., "Smectite Organofunctionalized with Thiol Groups for Adsorption of Heavy Metal Ions," Appl. Clay Sci., 42, 410-414(2009). https://doi.org/10.1016/j.clay.2008.04.006
  15. Park, S., Kim, B. J., Seo, D., Rhee, K. Y. and Lyu, Y. Y., "Effects of a Silane Treatment on the Mechanical Interfacial Properties of Montmorillonite Epoxy Nanocomposites," Mater. Sci. Eng., A 526, 74-78(2009).
  16. Piscitelli, F., Posocco, P., Toth, R., Fermeglia, M., Pricl, S., Mensitieri, G. and Lavorgna, M., "Sodium Montmorillonite Silylation: Unexpected Effect of the Aminosilane Chain Length," Journal of Colloid and Interface Science, 351, 108-115(2010). https://doi.org/10.1016/j.jcis.2010.07.059
  17. Shanmugharaj, A., Rhee, K. Y. and Ryu, S. H., "Influence of Dispersing Medium on Grafting of Aminopropyltriethoxysilane in Swelling Clay Materials," Journal of Colloid and Interface Science, 298, 854-859(2006). https://doi.org/10.1016/j.jcis.2005.12.049
  18. Shen, W., He, H., Zhu, J., Yuan, P. and Frost, R. L., "Grafting of Montmorillonite with Different Functional Silanes via Two Different Reaction Systems," Journal of Colloid and Interface Science, 313(1), 268-273(2007). https://doi.org/10.1016/j.jcis.2007.04.029
  19. Shen, W., He, H., Zhu, J., Yuan, P., Ma. Y. H. and Liang, X. L., "Preparation and Characterization of 3-aminopropyltriethoxysilane Grafted Montmorillonite and aCid-activated Montmorillonite," Chinese Science Bulletin, 54, 265-271(2009).
  20. Wu, P., Dai, Y., Long, H., Zhu, N., Li, P., Wu, J. and Dang, Z., "Characterization of Organomontmorillonites and Comparison for Sr(II) Removal: Equilibriumand Kinetic Studies," Chem. Eng. J., 191, 288-296(2012). https://doi.org/10.1016/j.cej.2012.03.017
  21. Wypych, F., "Chemical Modification of Clay Surfaces," In: Wypych, F., Satyanarayana, K. G. (Eds.), Clay Surfaces: Fundamentals and Applications. Elsevier, Amsterdam, pp. 1-56 (2004).
  22. He, H., Tao, Q., Zhu, J., Yuan, P., Shen, W. and Yang, S., "Silylation of Clay Mineral Surfaces," Applied Clay Science, 71, 15-20(2013). https://doi.org/10.1016/j.clay.2012.09.028
  23. Park, M. "Modification of External Surface of Laponite by Silane Grafting," Journal of Physics and Chemistry of Solids, 65, 499- 501(2004). https://doi.org/10.1016/j.jpcs.2003.10.031
  24. Bergaya, F. and Lagaly, G., "Surface Modification of Clay Minerals," Applied Clay Science, 19, 1-3(2001). https://doi.org/10.1016/S0169-1317(01)00063-1
  25. Herrera, N. N., Letoffe, J. M., Putaux, J. L., David, L. and Bourgeat- Lami, E., "Aqueous Dispersions of Silane-functionalized Laponite Clay Platelets: A First Step Toward the Elaboration of Water-based Polymer/clay Nanocomposites," Langmuir, 20, 1564-1571(2004). https://doi.org/10.1021/la0349267
  26. Bertuoli, P. T., Piazza, D., Scienza, L. C. and Zattera, A. J., "Preparation and Characterization of Montmorillonite Modified with 3- aminoporpyltriethoxysilane," Applied Clay Science, 87, 46-51(2014). https://doi.org/10.1016/j.clay.2013.11.020
  27. Lee, E. J., Lee, J. H., Park, Y. J., Yoon, Y. K. and Lim, K.-H., "Preparation of Self-repairing Polymer-modified Waterproofing Asphaltmontmorillonite Composite: 1. Silylation Characteristics of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane and its Optimal Condition According to a Criterion by XRD Analysis," Korean Chem. Eng. Res., 55(3), 401-408(2017). https://doi.org/10.9713/KCER.2017.55.3.401
  28. Gianni, A. D., Amerio, E., Monticelli, O. and Bongiovanni, R., "Preparation of Polymer/clay Mineral Nanocomposites via Dispersion of Silylated Montmorillonite in a UV Curable Epoxy Matrix," Appl. Clay Sci., 42, 116-124(2008). https://doi.org/10.1016/j.clay.2007.12.011
  29. Guimarães, A. M. F., Ciminelli, V. S. T. and Vasconcelos, W. L., "Smectite Organofunctionalized with Thiol Groups for Adsorption of Heavy Metal Ions," Appl. Clay Sci., 42, 410-414(2009). https://doi.org/10.1016/j.clay.2008.04.006
  30. Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H. and Mai, C., "Silane Coupling Agents Used for Natural Fiber/polymer Composites: a Review," Composites: Part A 41, 806-819(2010). https://doi.org/10.1016/j.compositesa.2010.03.005
  31. He, H. P., Guo, J. G., Xie, X. D., Lin, H. F., Li, L. Y., "A Microstructural Study of Acidactivated Montmorillonite from Choushan, China," Clay Minerals 37, 337-344(2002). https://doi.org/10.1180/0009855023720037