DOI QR코드

DOI QR Code

무회분 석탄(AFC)을 바인더로 이용한 코크스의 물리적 및 화학적 특성

Physical and Chemical characteristics of Cokes Using Ash-Free Coal as binder

  • 투고 : 2017.01.04
  • 심사 : 2017.03.07
  • 발행 : 2017.06.01

초록

본 연구에서는 무회분 석탄을 바인더로 첨가한 코크스의 물리적 및 화학적 성질들을 실험적으로 분석하고 강도 향상 메커니즘에 대해 고찰하였다. 또한 제철소에서의 $CO_2$ 저감을 위해 반탄화 과정을 거친 바이오매스 연료를 이용하였다. 무회분 석탄과 함께 팽윤현상(Swelling)이 일어나지 않는 발전용 석탄을 함께 탄화시켜서 전자현미경(SEM)을 이용하여 인터페이스를 관찰하였다. 또한 코크스의 강도 분석을 위하여 I.T.T (Indirect Tensile Test)와 함께, 화학적 구조 고찰을 위하여 $^1H$ NMR 및 $^{13}C$ NMR 분석을 사용하였다. 무회분 석탄의 $^1H$ NMR 및 $^{13}C$ NMR 분석으로 도출된 분자 구조와 코크스 강도의 관계를 도출하였으며, 그 결과 코크스의 강도는 무회분 석탄을 바인더로 첨가함으로써 증가될 수 있음을 확인하였다.

Coke strength was increased by adding ash-free coal (AFC) binder. In this study, the effect of the AFC binder on the physical and chemical properties of coke was experimentally investigated to understand the molecular mechanism for the improved coke strength. For reduced $CO_2$ emission in steelmaking industry, torrefied biomass fuel mixed with coal binder is also considered. The interface between the base coal and AFC was thus examined using Scanning Electron Microscope (SEM). The coke strength was commonly measured by performing the indirect tensile test and Nuclear Magnetic Resonance (NMR) spectroscopy in $^1H$ and $^{13}C$ modes. For comprehensive mechanism study of the enhanced coke strength thus obtained, ordinary coal for thermal power plant use was carbonized with AFC for subsequent SEM examination. The NMR spectroscopy results of coke samples positively revealed that the tensile strength was proportional to the average number of aromatic rings.

키워드

참고문헌

  1. Kwon, H. J., Choi, H. K., Jo, W. T., Kim, S. D., Yoo, J. H., Chun, D. H., Rhim, Y. J., Lim, J. H., Lee, S. H. and Rhee, Y. W., "Comparative Characterization of AFC Precipitated Using Vacumm Drying, Dilution Precipitation and Spray Drying," Korean Chem. Eng. Res., 54(2), 234-238(2016). https://doi.org/10.9713/kcer.2016.54.2.234
  2. Choi, H. K., Kim, S. D., Yoo, J. H., Chun, D. H., Lim, J. H., Rhim, Y. J. and Lee, S. H. "An Economic Analysis of Solvent Extraction Process under Mild Condition for Production of Ash-Free Coal," Korean Chem. Eng. Res., 50(3), 449-454(2012). https://doi.org/10.9713/kcer.2012.50.3.449
  3. Takahiro, S., Koji, S., Noriyuki, O., Maki, H. and Nobuyuki, K., "Coke Making Technology Using Hyper-coal," Kobe Steel Eng. Rep., 60(1), 62(2010).
  4. Toshimasa, T., Takahiro, S. and Ikuo, S., "Effects of Hyper Coal Addition on Coke Strength and Thermoplasticity of Coal Blends," Energ. Fuel., 22(3), 1779-1783(2008). https://doi.org/10.1021/ef7007375
  5. Koji, K., Toshimasa, T. and Ikuo, S., "Estimation of the Extraction Yield of Coals by a Simple Analysis," Energ. Fuel., 25(6), 2565- 2571(2011). https://doi.org/10.1021/ef200151u
  6. Naoto, S., Toshimasa, T., Yasuyuki, H. and Hidekazu, F., "Relationshop between Chemical Structure of Caking Additives Produced from Low Rank Coals and Coke Strength," ISIJ Int., 54(11), 2426-2431. https://doi.org/10.2355/isijinternational.54.2426
  7. Sato, Y., Kushiyama, S., Tatsumoto, K. and Yamaguchi, H., "Upgrading of Low Rank Coal with Solvent," Fuel Process. Technol., 85, 1551-1564(2004). https://doi.org/10.1016/j.fuproc.2003.10.023
  8. Tadashi, Y., "Structural Analysis of Coal and Coal-derived Oil," J. Jpn. Petrol. Inst., 35(1), 1-13.
  9. Tsugio, M. and Ichiro, F., "A Study on The Tensile Strength of Coke (I) The Tensile Strength of Blast-Furnace Coke," J. Inst. Fuel, 54(12), 983-993.
  10. Kim, S. D., Woo, K. J., Jeong, S. K., Rhim, Y. J. and Lee, S. H. "Production of low ash coal by thermal extraction with N-methyl- 2-pyrrolidinone," Korean J. Chem. Eng., 25(4), 758-763(2008). https://doi.org/10.1007/s11814-008-0124-0
  11. R. P. Suggate and W. W. Dickinson "Carbon NMR of Coals: the Effects of Coal Type and Rank," Int. J. Coal Geol., 57, 1-22(2004). https://doi.org/10.1016/S0166-5162(03)00116-2