DOI QR코드

DOI QR Code

A textbook analysis of irrational numbers unit: focus on the view of process and object

무리수 단원에 대한 교과서 분석 연구: 과정과 대상의 관점으로

  • Oh, Kukhwan (Graduate school of Department of Mathematics Education, Seoul National University) ;
  • Park, Jung Sook (Yangjae High School) ;
  • Kwo, Oh Nam (Department of Mathematics Education, Seoul National University)
  • Received : 2016.07.15
  • Accepted : 2017.05.20
  • Published : 2017.05.31

Abstract

The representation of irrational numbers has a key role in the learning of irrational numbers. However, transparent and finite representation of irrational numbers does not exist in school mathematics context. Therefore, many students have difficulties in understanding irrational numbers as an 'Object'. For this reason, this research explored how mathematics textbooks affected to students' understanding of irrational numbers in the view of process and object. Specifically we analyzed eight textbooks based on current curriculum and used framework based on previous research. In order to supplement the result derived from textbook analysis, we conducted questionnaires on 42 middle school students. The questions in the questionnaires were related to the representation and calculation of irrational numbers. As a result of this study, we found that mathematics textbooks develop contents in order of process-object, and using 'non repeating decimal', 'numbers cannot be represented as a quotient', 'numbers with the radical sign', 'number line' representation for irrational numbers. Students usually used a representation of non-repeating decimal, although, they used a representation of numbers with the radical sign when they operate irrational numbers. Consequently, we found that mathematics textbooks affect students to understand irrational numbers as a non-repeating irrational numbers, but mathematics textbooks have a limitation to conduce understanding of irrational numbers as an object.

Keywords

References

  1. 고호경, 김응환, 양순열, 권세화, 권순학, 정낙영, 장인선, 임유원, 최수영, 이성재, 노솔, 백형윤, 홍창섭 (2013). 중학교 수학 3. 서울: 교학사. (Ko, H., Kim, E., Yang, S., Kwon, S., Kwon, S., Jeong, N., Jang, I., Lim, Y., Choi, S., Lee, S., Noh, S., Baek, H., & Hong, C. (2013). Middle School Mathematics 3. Seoul: Kyohaksa.)
  2. 김서령, 이정례, 선우하식, 이진호, 김원, 김양수, 신지영, 김윤희, 노창균, 정혜윤, 주우진 (2013). 중학교 수학 3. 서울: 천재교육. (Kim, S., Lee, J., Sunwoo, H., Lee, J., Kim, W., Kim, Y., Shin, J., Kim, Y., Noh, C., Jung, H., & Joo, W. (2013). Middle School Mathematics 3. Seoul: Chunjae.)
  3. 김원경, 조민식, 방금성, 김수미, 배수경, 오혜정, 지은정, 최형권, 황정하 (2014). 중학교 수학 3. 서울: 비상교육. (Kim, W., Cho, M., Bang, K., KIm, S., Bae, S., Oh, H., Ji, E., Choi, H., & Hwang, J. (2014). Middle School Mathematics 3. Seoul: Visang)
  4. 김흥기 (2004). 중학교에서 순환소수 취급과 무리수 도입에 관한 고찰. 수학교육학연구 14(1). 1-17. (Kim, H. (2004). A Thought on dealing with repeating decimals and introducing irrational numbers(in the middle school mathematics). The journal of educational research in mathematics 14(1), 1-17.)
  5. 류희찬, 류성림, 이경화, 신보미, 강순모, 윤옥교, 김명수, 조성오, 천태선, 김철호. (2015). 중학교 수학 3. 서울: 천재교육. (Ryu, H., Ryu, S., Lee, K., Shin, B., Kang, S., Yoon, O., Kim, M., Cho, S., Chun, T., & Kim, C. (2015). Middle School Mathematics 3. Seoul: Chunjae.)
  6. 박달원 (2007). 무한소수에 대한 학생들의 이해. 한국학교수학회논문집 10(2), 237-246. (Park, D. (2007). A study on understanding of infinite decimal. Journal of the Korean school mathematics society 10(2), 237-246.)
  7. 박윤희, 박달원, 정인철 (2004). 중학교 수학에서 무리수 개념에 관한 학습자의 이해 연구. 한국학교수학회 논문집 7(2), 99-116. (Park, Y., Park, D., & Jung, I. (2004). Study on learneer's understanding of the concept of irrational number in middle school. Journal of the Korean school mathematics society 7(2), 99-116.)
  8. 변희현, 박선용 (2002). 무리수의 개념적 측면을 강조한 교육방안: '통약불가능성'을 통한 무리수 고찰. 학교수학 4(4), 643-655. (Byun, H. & Park, S. (2002). Teaching and learning irrational number with its conceptual aspects stressed: consideration of irrational number through the conception of 'incommensurability'. Journal of Korea society of educational studies in mathematics 4(4), 643-655.)
  9. 신보미 (2008). 실수로의 수 체계 확장을 위한 유리수의 재해석에 대하여. 한국학교수학회논문집 11(2), 285-298. (Shin, B. (2008). On explaining rational numbers for extending the number system to real numbers. Journal of the Korean school mathematics society 11(2), 285-298.)
  10. 우정호, 홍진곤 (1999). 반영적 추상화와 조작적 수학 학습-지도. 수학교육연구 9(2), 383-404.. (Woo, J. & Hong, J. (1999). Reflective abstraction and operational instruction of mathematics. The journal of educational research in mathematics 9(2), 383-404.)
  11. 우정호, 박교식, 이종희, 박경미, 김남희, 임재훈, 남진영, 권석일, 김진환, 강현영, 조차미, 최은자, 김준식, 허선희, 전지영, 고현주, 이정연 (2013). 중학교 수학 3. 서울: 두산동아. (Woo, J., Park, K., Lee, J., Park, K., Kim, N., Lim, J., Nam, J., Kwon, S., Kim, J., Kang, H., Cho, C., Choi, E., Kim, J., Heo, S., Chun, J., Ko, H., & Lee, J. (2013). Middle school mathematics 3. Seoul: Doosan Donga.)
  12. 이선비 (2013). 예비 중등 교사들의 무리수에 대한 이해. 한국학교수학회논문집 16(3), 499-518. (Lee, S. (2013). Preservice secondary mathematics teachers' understanding of irrational numbers. Journal of the Korean school mathematics society 16(3), 499-518.)
  13. 이지현 (2014). 무한소수 기호: 불투명성과 투명성. 수학교육학연구 24(4), 595-605. (Lee, J. (2014). The infinite decimal representation: Its opaqueness and transparency. Journal of educational research in mathematics 24(4), 595-605.)
  14. 이지현 (2015). 유리수와 무리수의 합집합을 넘어서. 수학교육학연구 25(3), 263-279. (Lee, J. (2015). Beyond the union of rational and irrational numbers. Journal of educational research in mathematics 25(3), 263-279.)
  15. 정상권, 이재학, 박혜숙, 홍진곤, 박부성, 강은주, 오화평 (2013). 중학교 수학 3. 서울: 금성출판사. (Jung, S., Lee, J., Park, H., Hong, J., Park, P., Kang, E., & Oh, H. (2013). Middle school mathematics 3. Seoul: Geumsung.)
  16. 허민, 김선희, 도종훈, 조혜정, 조숙영, 이경은, 양서윤, 이규희, 김소연 (2015). 중학교 수학 3. 서울: 대교. (Heo, M., Kim, S., Do, J., JO, H., Jo, S., Lee, K., Yang, S., Lee, K., & Kim, S. (2015). Middle school mathematics 3. Seoul: Daekyo.)
  17. 황선욱, 강병개, 한길준, 한철형, 권혁천, 김의석, 유기종, 정종식, 김민정 (2013). 중학교 수학 3. 서울: 좋은책신사고. (Hwang, S., Kang, B., Han, K., Han, C., Kwon, H., Kim, E., Yoo, K., Chung, J., & Kim, M. (2013). Middle school mathematics 3. Seoul: Sinsago.)
  18. Arnon, I., Cottrill, J., Dubinsky, E., Oktac, A., Fuentes, S. R., Trigueros, M., & Weller, K. (2013). APOS theory: A framework for research and curriculum development in mathematics education. Springer Science & Business Media.
  19. Gray, E. M. & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A" proceptual" view of simple arithmetic. Journal for research in Mathematics Education 25(2), 116-140. https://doi.org/10.2307/749505
  20. Moreira, P. C. & David, M. M. (2008). Academic mathematics and mathematical knowledge needed in school teaching practice: Some conflicting elements. Journal of Mathematics Teacher Education 11(1), 23-40. https://doi.org/10.1007/s10857-007-9057-5
  21. Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics 22, 1-36.
  22. Sirotic, N. & Zazkis, A. (2007a). Irrational numbers: The gap between formal and intuitive knowledge. Educational Studies in Mathematics 65(1), 49-76. https://doi.org/10.1007/s10649-006-9041-5
  23. Sirotic, N. & Zazkis, R. (2007b). Irrational numbers on the number line-where are they?. International Journal of Mathematical Education in Science and Technology 38(4), 477-488. https://doi.org/10.1080/00207390601151828
  24. Voskoglou, M. G. (2013). An application of the APOS/ACE approach in teaching the irrational numbers. Journal of Mathematical Sciences and Mathematics Education 8(1), 30-47.
  25. Watson, A. & Mason, J. (2015). 색다른 학교 수학 (이경화 역.). 서울: 경문사. (원저 2005 출판)
  26. Zazkis, R. (2005). Representing numbers: prime and irrational. International journal of mathematical education in science and technology 36(2-3), 207-218. https://doi.org/10.1080/00207390412331316951
  27. Zazkis, R. & Sirotic, N. (2010). Representing and defining irrational numbers: Exposing the missing link. CBMS Issues in Mathematics Education 16, 1-27.