DOI QR코드

DOI QR Code

Selective Production of Monomeric Phenols from Lignin via Two-step Catalytic Cracking Process

2단계 촉매 분해공정을 이용한 리그닌 유래 선택적 페놀화합물 생산

  • Kim, Jae-Young (Institute of Green-Bio Science and Technology, Seoul National University) ;
  • Heo, Sujung (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Park, Shin Young (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, Joon Weon (Institute of Green-Bio Science and Technology, Seoul National University)
  • 김재영 (서울대학교 그린바이오과학기술연구원) ;
  • 허수정 (서울대학교 국제농업기술대학원) ;
  • 박신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 그린바이오과학기술연구원)
  • Received : 2017.02.16
  • Accepted : 2017.04.18
  • Published : 2017.05.25

Abstract

In this study, lignin was efficiently degraded via two-step catalytic cracking process and lignin-oil, char, and gas was produced as lignin degraded products. Three kinds of catalysts (MgO, CaO, and Pt/C) were used in first catalytic cracking step and the highest lignin-oil yield (76.2 wt%) was obtained in Pt/C catalyst with the smallest char formation (4.1 wt%). GC-MS/FID analysis revealed that 18 kinds of monomeric phenols existed in lignin-oil and sum of them was the highest in Pt/C condition (97.8 mg/g lignin). Meanwhile, relatively lower yield of monomeric phenols was produced in MgO and CaO condition because of their absorption on catalysts. Lignin-oil produced over Pt/C was introduced to second catalytic cracking process with porous Pd/activated carbon aerogel catalyst. From this process, four kinds of monomeric phenols such as 4-ethylguaiacol, 4-propylguaiacol, 4-ethylsyringol, 4-propylsyringol were selectively produced at 0.89 - 1.82 wt% level.

본 연구에서는 2단계 촉매 분해공정 시스템을 이용하여 효과적으로 리그닌을 분해하였으며 리그닌 분해산물로 액상의 리그닌 오일, 촤, 가스가 생성되었다. 1차 촉매 분해공정에서는 MgO, CaO, Pt/C 촉매를 사용하였으며 Pt/C 촉매를 사용했을 때 가장 높은 리그닌 오일 수율(76.2 wt%) 및 가장 낮은 촤 수율(4.1 wt%)을 얻을 수 있었다. 리그닌 오일의 GC-MS/FID 분석을 통해 guaiacol, 4-ethylphenol, 4-methylguaiacol, 4-ethylguaiacol, syringol 등 18종류의 페놀화합물을 검출하였으며 Pt/C 조건에서 생산된 페놀화합물 수율이 97.8 mg/g lignin로 가장 높았다. 한편 MgO와 CaO에서 생산된 페놀화합물은 촉매에 흡착되어 상대적으로 낮은 수율을 보였다. Pt/C 조건에서 생산된 리그닌 오일을 다공성 구조를 가지는 Pd/activated carbon aerogel 촉매 하에서 추가 분해하였다. 2차 촉매 분해공정을 통해 상대적으로 선택성이 높은 4가지 페놀화합물(4-ethylguaiacol, 4-propylguaiacol, 4-ethylsyringol, 4-propylsyringol)을 0.89 - 1.82 wt% 수준으로 생산하였다.

Keywords

References

  1. Alonso, F., Riente, P., Rodriguez-Reinoso, F., Ruiz-Martinez, J., Sepulveda-Escribano, A., Yus, M. 2009. A Highly Reusable Carbon-Supported Platinum Catalyst for the Hydrogen-Transfer Reduction of Ketones. ChemCatChem 1(1): 75-77. https://doi.org/10.1002/cctc.200900045
  2. Bouxin, F.P., McVeigh, A., Tran, F., Westwood, N.J., Jarvis, M.C., Jackson, S.D. 2015. Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1-impact of the lignin structure. Green Chemistry 17(2): 1235-1242. https://doi.org/10.1039/C4GC01678E
  3. Brunow, G., Lundquist, K. 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Boca Raton, USA.
  4. Chaudhary, R., Dhepe, P.L. 2017. Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chemistry 19: 778-788. https://doi.org/10.1039/C6GC02701F
  5. Das, J., Halgeri, A.B. 2000. Selective synthesis of para-ethylphenol over pore size tailored zeolite. Applied Catalysis A: General 194: 359-363.
  6. Fang, B., Binder, L. 2006. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of Power Sources 163(1): 616-622. https://doi.org/10.1016/j.jpowsour.2006.09.014
  7. Fang, Z., Sato, T., Smith, R.L., Inomata, H., Arai, K., Kozinski, J.A. 2008. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology 99(9): 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
  8. Farag, S., Kouisni, L., Chaouki, J. 2014. Lumped approach in kinetic modeling of microwave pyrolysis of kraft lignin. Energy & Fuels 28(2): 1406-1417. https://doi.org/10.1021/ef4023493
  9. Gosselink, R.J., Teunissen, W., Van Dam, J.E., De Jong, E., Gellerstedt, G., Scott, E.L., Sanders, J.P. 2012. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology 106: 173-177. https://doi.org/10.1016/j.biortech.2011.11.121
  10. Hanzawa, Y., Kaneko, K., Pekala, R., Dresselhaus, M. 1996. Activated carbon aerogels. Langmuir 12(26): 6167-6169. https://doi.org/10.1021/la960481t
  11. Huang, X., Atay, C., Koranyi, T.I., Boot, M.D., Hensen, E.J. 2015. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catalysis 5(12): 7359-7370. https://doi.org/10.1021/acscatal.5b02230
  12. Huang, S., Mahmood, N., Tymchyshyn, M., Yuan, Z., Xu, C.C. 2014. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresource Technology 171: 95-102. https://doi.org/10.1016/j.biortech.2014.08.045
  13. Jegers, H.E., Klein, M.T. 1985. Primary and secondary lignin pyrolysis reaction pathways. Industrial & Engineering Chemistry Process Design and Development 24(1): 173-183. https://doi.org/10.1021/i200028a030
  14. Kim, J.-Y., Oh, S., Hwang, H., Cho, T.-s., Choi, I.-G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93(9): 1755-1764. https://doi.org/10.1016/j.chemosphere.2013.06.003
  15. Kim, J.-Y., Park, J., Kim, U.-J., Choi, J.W. 2015. Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts. Energy & Fuels 29(8): 5154-5163. https://doi.org/10.1021/acs.energyfuels.5b01055
  16. Laskar, D.D., Tucker, M.P., Chen, X., Helms, G.L., Yang, B. 2014. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chemistry 16(2): 897-910. https://doi.org/10.1039/c3gc42041h
  17. Ling, S.K., Tian, H.-Y., Wang, S., Rufford, T., Zhu, Z., Buckley, C. 2011. KOH catalysed preparation of activated carbon aerogels for dye adsorption. Journal of Colloid and Interface Science 357(1): 157-162. https://doi.org/10.1016/j.jcis.2011.01.092
  18. Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L. 2014. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource technology 154: 10-17. https://doi.org/10.1016/j.biortech.2013.12.020
  19. Lora, J.H., Glasser, W.G. 2002. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10(1-2): 39-48. https://doi.org/10.1023/A:1021070006895
  20. Moreno-Castilla, C., Maldonado-Hodar, F. 2005. Carbon aerogels for catalysis applications: An overview. Carbon 43(3): 455-465. https://doi.org/10.1016/j.carbon.2004.10.022
  21. Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., Hellal, A. 2005. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl 2 and H 3 PO 4. Journal of Hazardous Materials 119(1): 189-194. https://doi.org/10.1016/j.jhazmat.2004.12.006
  22. Park, H.W., Hong, U.G., Lee, Y.J., Song, I.K. 2011. Decomposition of 4-phenoxyphenol to aromatics over palladium catalyst supported on activated carbon aerogel. Applied Catalysis A: General 409: 167-173.
  23. Park, J., Kim, J.Y., Choi, J.W. 2015. Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil. Journal of The Korean Wood Science & Technology 43(3): 355-363. https://doi.org/10.5658/WOOD.2015.43.3.355
  24. Saha, B.C., Nichols, N.N., Qureshi, N., Kennedy, G.J., Iten, L.B., Cotta, M.A. 2015. Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresource technology 175: 17-22. https://doi.org/10.1016/j.biortech.2014.10.060
  25. Saidi, M., Samimi, F., Karimipourfard, D., Nimmanwudipong, T., Gates, B.C., Rahimpour, M.R. 2014. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science 7(1): 103-129. https://doi.org/10.1039/C3EE43081B
  26. Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., Xu, J. 2013. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy & Environmental Science 6(3): 994-1007. https://doi.org/10.1039/c2ee23741e
  27. Wang, Y.-Y., Ling, L.-L., Jiang, H. 2016. Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni-Mo 2 C catalyst obtained from biomass. Green Chemistry 18(14): 4032-4041. https://doi.org/10.1039/C6GC00247A
  28. Ye, Y., Zhang, Y., Fan, J., Chang, J. 2012. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. Bioresource Technology 118: 648-651. https://doi.org/10.1016/j.biortech.2012.05.127