References
- Alonso, F., Riente, P., Rodriguez-Reinoso, F., Ruiz-Martinez, J., Sepulveda-Escribano, A., Yus, M. 2009. A Highly Reusable Carbon-Supported Platinum Catalyst for the Hydrogen-Transfer Reduction of Ketones. ChemCatChem 1(1): 75-77. https://doi.org/10.1002/cctc.200900045
- Bouxin, F.P., McVeigh, A., Tran, F., Westwood, N.J., Jarvis, M.C., Jackson, S.D. 2015. Catalytic depolymerisation of isolated lignins to fine chemicals using a Pt/alumina catalyst: part 1-impact of the lignin structure. Green Chemistry 17(2): 1235-1242. https://doi.org/10.1039/C4GC01678E
- Brunow, G., Lundquist, K. 2010. Functional groups and bonding patterns in lignin (including the lignin-carbohydrate complexes). CRC Press, Boca Raton, USA.
- Chaudhary, R., Dhepe, P.L. 2017. Solid base catalyzed depolymerization of lignin into low molecular weight products. Green Chemistry 19: 778-788. https://doi.org/10.1039/C6GC02701F
- Das, J., Halgeri, A.B. 2000. Selective synthesis of para-ethylphenol over pore size tailored zeolite. Applied Catalysis A: General 194: 359-363.
- Fang, B., Binder, L. 2006. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of Power Sources 163(1): 616-622. https://doi.org/10.1016/j.jpowsour.2006.09.014
- Fang, Z., Sato, T., Smith, R.L., Inomata, H., Arai, K., Kozinski, J.A. 2008. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology 99(9): 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
- Farag, S., Kouisni, L., Chaouki, J. 2014. Lumped approach in kinetic modeling of microwave pyrolysis of kraft lignin. Energy & Fuels 28(2): 1406-1417. https://doi.org/10.1021/ef4023493
- Gosselink, R.J., Teunissen, W., Van Dam, J.E., De Jong, E., Gellerstedt, G., Scott, E.L., Sanders, J.P. 2012. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresource Technology 106: 173-177. https://doi.org/10.1016/j.biortech.2011.11.121
- Hanzawa, Y., Kaneko, K., Pekala, R., Dresselhaus, M. 1996. Activated carbon aerogels. Langmuir 12(26): 6167-6169. https://doi.org/10.1021/la960481t
- Huang, X., Atay, C., Koranyi, T.I., Boot, M.D., Hensen, E.J. 2015. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol. ACS Catalysis 5(12): 7359-7370. https://doi.org/10.1021/acscatal.5b02230
- Huang, S., Mahmood, N., Tymchyshyn, M., Yuan, Z., Xu, C.C. 2014. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresource Technology 171: 95-102. https://doi.org/10.1016/j.biortech.2014.08.045
- Jegers, H.E., Klein, M.T. 1985. Primary and secondary lignin pyrolysis reaction pathways. Industrial & Engineering Chemistry Process Design and Development 24(1): 173-183. https://doi.org/10.1021/i200028a030
- Kim, J.-Y., Oh, S., Hwang, H., Cho, T.-s., Choi, I.-G., Choi, J.W. 2013. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub-and supercritical ethanol. Chemosphere 93(9): 1755-1764. https://doi.org/10.1016/j.chemosphere.2013.06.003
- Kim, J.-Y., Park, J., Kim, U.-J., Choi, J.W. 2015. Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts. Energy & Fuels 29(8): 5154-5163. https://doi.org/10.1021/acs.energyfuels.5b01055
- Laskar, D.D., Tucker, M.P., Chen, X., Helms, G.L., Yang, B. 2014. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chemistry 16(2): 897-910. https://doi.org/10.1039/c3gc42041h
- Ling, S.K., Tian, H.-Y., Wang, S., Rufford, T., Zhu, Z., Buckley, C. 2011. KOH catalysed preparation of activated carbon aerogels for dye adsorption. Journal of Colloid and Interface Science 357(1): 157-162. https://doi.org/10.1016/j.jcis.2011.01.092
- Long, J., Zhang, Q., Wang, T., Zhang, X., Xu, Y., Ma, L. 2014. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource technology 154: 10-17. https://doi.org/10.1016/j.biortech.2013.12.020
- Lora, J.H., Glasser, W.G. 2002. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10(1-2): 39-48. https://doi.org/10.1023/A:1021070006895
- Moreno-Castilla, C., Maldonado-Hodar, F. 2005. Carbon aerogels for catalysis applications: An overview. Carbon 43(3): 455-465. https://doi.org/10.1016/j.carbon.2004.10.022
- Namane, A., Mekarzia, A., Benrachedi, K., Belhaneche-Bensemra, N., Hellal, A. 2005. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl 2 and H 3 PO 4. Journal of Hazardous Materials 119(1): 189-194. https://doi.org/10.1016/j.jhazmat.2004.12.006
- Park, H.W., Hong, U.G., Lee, Y.J., Song, I.K. 2011. Decomposition of 4-phenoxyphenol to aromatics over palladium catalyst supported on activated carbon aerogel. Applied Catalysis A: General 409: 167-173.
- Park, J., Kim, J.Y., Choi, J.W. 2015. Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil. Journal of The Korean Wood Science & Technology 43(3): 355-363. https://doi.org/10.5658/WOOD.2015.43.3.355
- Saha, B.C., Nichols, N.N., Qureshi, N., Kennedy, G.J., Iten, L.B., Cotta, M.A. 2015. Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresource technology 175: 17-22. https://doi.org/10.1016/j.biortech.2014.10.060
- Saidi, M., Samimi, F., Karimipourfard, D., Nimmanwudipong, T., Gates, B.C., Rahimpour, M.R. 2014. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy & Environmental Science 7(1): 103-129. https://doi.org/10.1039/C3EE43081B
- Song, Q., Wang, F., Cai, J., Wang, Y., Zhang, J., Yu, W., Xu, J. 2013. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process. Energy & Environmental Science 6(3): 994-1007. https://doi.org/10.1039/c2ee23741e
- Wang, Y.-Y., Ling, L.-L., Jiang, H. 2016. Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni-Mo 2 C catalyst obtained from biomass. Green Chemistry 18(14): 4032-4041. https://doi.org/10.1039/C6GC00247A
- Ye, Y., Zhang, Y., Fan, J., Chang, J. 2012. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. Bioresource Technology 118: 648-651. https://doi.org/10.1016/j.biortech.2012.05.127