DOI QR코드

DOI QR Code

MoOx 기반의 고성능 투명 광검출기

MoOx-Windowed High-Performing Transparent Photodetector

  • 박왕희 (인천대학교 차세대 융합에너지 중점연구소 광전에너지소자연구실) ;
  • 이경남 (인천대학교 차세대 융합에너지 중점연구소 광전에너지소자연구실) ;
  • 김준동 (인천대학교 차세대 융합에너지 중점연구소 광전에너지소자연구실)
  • Park, Wang-Hee (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Lee, Gyeongnam (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Kim, Joondong (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University)
  • 투고 : 2017.02.22
  • 심사 : 2017.03.21
  • 발행 : 2017.06.01

초록

A high-performing all-transparent photodetector was created by configuring a $MoO_x$/NiO/ZnO/ITO structure on a glass substrate. The ITO bottom layer was applied as a back contact. To achieve the transparent p/n junction, p-type NiO was coated on the n-type ZnO layer. Reactive sputtering was used to spontaneously form the ZnO or NiO layer. In order to improve the transparent photodetector performance, the functional $MoO_x$ window layer was used. Optically, the $MoO_x$ window provided a refractive index layer (n=1.39) lower than that of NiO (n=2), increasing the absorption of the incident light wavelengths (${\lambda}s$). Moreover, the $MoO_x$ window can provide a lower sheet resistance to improve the carrier collection for the photoresponses. The $MoO_x$/NiO/ZnO/ITO device showed significantly better photoresponses of 877.05 (at ${\lambda}$=460nm), 87.30 (${\lambda}$=520 nm), and 30.38 (${\lambda}$=620 nm), compared to 197.28 (${\lambda}$=460 nm), 51.74 (${\lambda}$=520 nm) and 25.30 (${\lambda}$=620 nm) of the NiO/ZnO/ITO device. We demonstrated the high-performing transparent photodetector by using the multifunctional $MoO_x$ window layer.

키워드

참고문헌

  1. N. Liu, H. Tian, G. Schwartz, T. Ren, and Z. Bao, Nano Lett., 14, 3702 (2014). [DOI: http://dx.doi.org/10.1021/nl500443j]
  2. C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, and W. Xie, ACS Appl. Mater. Interfaces, 7, 25981 (2015). [DOI: http://dx.doi.org/10.1021/acsami.5b09492]
  3. W. H. Park and J. D. Kim, Korean Inst. Electr. Electron. Mater. Eng., 29, 720 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.11.720]
  4. W. Tian, T. Zhai, C. Zhang, S. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg, and Y. Bando, Adv. Mater., 24, 4625 (2013). [DOI: http://dx.doi.org/10.1002/adma.201301828]
  5. M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle, Sol. Energy Mat. Sol. Cells, 142, 34 (2015). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.05.031]
  6. J. Bullock, A. Cuevas, T. Allen, C. Battaglia, J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, Appl. Phys. Lett., 105, 232109 (2016). [DOI: http://dx.doi.org/10.1063/1.4903467]
  7. J. Geissbuhler, J. Werner, S. M. De Nicolas, L. Barraud, A. Hessler-wyser, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, B. Niesen, S. De Wolf, and C. Ballif, Appl. Phys. Lett., 107, 081601 (2016). [DOI: http://dx.doi.org/10.1063/1.4928747]
  8. J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, Energy Procedia, 77, 446 (2015). [DOI: http://dx.doi.org/10.1016/j.egypro.2015.07.063]
  9. C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. Mcdonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, Nano Lett., 14, 967 (2014). [DOI: http://dx.doi.org/10.1021/nl404389u]
  10. W. Du, R. Takabe, M. Baba, H. Takeuchi, K. O. Hara, K. Toko, and N. Usami, Appl. Phys. Lett., 106, 122104 (2016). [DOI: http://dx.doi.org/10.1063/1.4916348]
  11. N. Oka, H. Watanabe, Y. Sato, H. Yamaguchi, N. Ito, H. Tsuji, and Y. Shigesato, J. Vac. Sci. Technol. A, 28, 2 (2010). [DOI: http://dx.doi.org/10.1116/1.3328822]
  12. H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, and M. Kamiya, Appl. Phys. Lett., 83, 1029 (2016). [DOI: http://dx.doi.org/10.1063/1.1598624]
  13. R.K.A. Gupta, K. Ghosh, and P. K. Kahol, Phys. E, 41, 617 (2009). [DOI: http://dx.doi.org/10.1016/j.physe.2008.10.013]
  14. H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, H. Long, G. Fang, and X. Mo, Appl. Phys. Lett., 95, 013509 (2013). [DOI: http://dx.doi.org/10.1063/1.3176440]
  15. W. H. Park, D. K. Ban, H. S. Kim, M. Patel, J. H. Yoo, and J. Kim, Korean Inst. Electr. Electron. Mater, Eng., 29, 445 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.7.445]
  16. M. Patel, H. S. Kim, H. H. Park, and J. Kim, Sci. Rep., 6 (2016). [DOI: http://dx.doi.org/10.1038/srep25461]
  17. M. Patel, H. S. Kim, and J. Kim, Adv. Electron. Mater., 1 (2015). [DOI: http://dx.doi.org/10.1002/aelm.201500232]