DOI QR코드

DOI QR Code

마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구

Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor

  • 투고 : 2016.10.12
  • 심사 : 2017.03.12
  • 발행 : 2017.06.01

초록

수소화붕소나트륨은 안정적으로 수소가 저장된 물질이며, 촉매반응으로 수소를 용이하게 분리할 수 있다. 본 연구에서는 탈수소 반응률을 높이기 위해 비표면적이 큰 마이크로 pin fin 화학반응기를 제작하여 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 실험을 수행하였다. 나노공정을 이용하여 실리콘웨이퍼에 높이 $300{\mu}m$, 직경 $50{\mu}m$의 pin fin을 축간격 1.3, 횡간격 1.5으로 엇갈림 배열하였다. 수소화붕소나트륨 수용액은 5~20 wt.% 농도로 Re수 1~60으로 공급되었으며, 초고속카메라를 이용하여 탈수소반응 유동양상을 관찰하였다. 실험 결과 마이크로 pin fin 화학반응기는 동일 수력학적직경을 가지는 직관 마이크로채널 화학반응기보다 화학반응 성능이 2.45배 우수한 반면, 압력강하는 1.5배 증가하였다.

Dehydrogenation from the hydrolysis of a sodium borohydride ($NaBH_4$) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a $NaBH_4$ solution over both a single microchannel with a hydraulic diameter of $300{\mu}m$ and a staggered array of micro pin fins in the microchannel with hydraulic diameter of $50{\mu}m$. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

키워드

참고문헌

  1. Cooper, A. C., Campbell, K. M. and Pez, G. P., 2006, "An Integrated Hydrogen Storage and Delivery Approach Using Organic Liquid-Phase Carriers," Proceedings of 16th World Hydrogen Energy Conference, Lyon, France.
  2. David, E., 2005, "An Overview of Advanced Materials for Hydrogen Storage," Journal of Materials Processing Technology, Vol. 162-163, pp. 169-177. https://doi.org/10.1016/j.jmatprotec.2005.02.027
  3. Retnamma, R., Novais, A. Q. and Rangel, C. M., 2011, "Kinetics of Hydrolysis of Sodium Borohydride for Hydrogen Production in Fuel Cell Applications: A Review," Int. J. Hydrogen Energy, Vol. 36, No. 16, pp. 9772-9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  4. Santos, D. M. F. and Sequeira, C.A.C., 2011, "Sodium Borohydride as A Fuel for The Future," Renewable and Sustainable Energy Reviews, Vol. 15, pp. 3980- 4001. https://doi.org/10.1016/j.rser.2011.07.018
  5. Hung, A., Tsai, S., Hsu, Y., Ku, J., Chen, Y. and Yu, C., 2008, "Kinetics of Sodium Borohydride Hydrolysis Reaction for Hydrogen Generation," Int. J. Hydrogen Energy, Vol. 33, pp. 6205-6215. https://doi.org/10.1016/j.ijhydene.2008.07.109
  6. Muir, S. S. and Yao, X., 2011, "Progress In Sodium Borohydride as A Hydrogen Storage Material: Development of Hydrolysis Catalysts and Reaction Systems," Int. J. Hydrogen Energy, Vol. 36, pp. 5983-5997. https://doi.org/10.1016/j.ijhydene.2011.02.032
  7. Kolb, G., 2013, "Review: Microstructured Reactors for Distributed and Renewable Production of Fuels and Electrical Energy," Chemical Engineering and Processing: Process Intensification, Vol. 65, pp. 1-44. https://doi.org/10.1016/j.cep.2012.10.015
  8. Balasubramanian, K., Lee, P. S., Teo, C. J. and Chou, S. K., 2013, "Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels," Int. J. Heat Mass Trans., Vol. 67, pp. 234-252. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.023
  9. Reeser, A., Bar-Cohen, A. and Hetsroni, G., 2014, "High Quality Flow Boiling Heat Transfer and Pressure Drop in Microgap Pin Fin Arrays," Int. J. Heat Mass Trans., Vol. 78, pp. 974-985. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.021
  10. Choi, S. H., Hwang, S. S. and Lee, H.J., 2014, "Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor," Trans. Korean Soc. Mech. Eng. B, Vol. 38, pp. 139-146. https://doi.org/10.3795/KSME-B.2014.38.2.139
  11. Short, B. E., Raad, P. E. and Price, D. C., 2002, "Performance of Pin Fin Cast Aluminum Cold Walls, Part 1: Friction Factor Correlations," J. Thermophysics and Heat Transfer, Vol. 16, No. 3, pp. 389-396. https://doi.org/10.2514/2.6692
  12. Kosar, A., Mishra, C. and Peles, Y., 2005, "Laminar Flow Across A Bank of Low Aspect Ratio Micro Pin Fins," J. Fluids Eng., Vol. 127, No. 3, pp. 419-430. https://doi.org/10.1115/1.1900139
  13. Roth, R., Lenk, G., Cobry, K. and Woias, P., 2013, "Heat Transfer in Freestanding Microchannels With In-Line and Staggered Pin Fin Structures With Clearance," Int. J. Heat Mass Trans., Vol. 67, pp. 1-15. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.097
  14. Qu, W. and Siu-Ho, A., 2008, "Liquid Single-Phase Flow in An Array Of Micro-Pin-Fins Part II: Pressure Drop Characteristics," J. Heat Transfer, Vol. 130, No. 12, pp. 124501 1-4.
  15. Tullius, J. F., Tullius, T. K. and Bayazitoglu, Y., 2012, "Optimization of Short Micro Pin Fins in Minichannels," Int. J. Heat Mass Trans., Vol. 55, No. 3, pp. 3921-3932. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.022