참고문헌
- I. Berkes and E. Csaki, A universal result in almost sure central limit theory, Stochastic Process. Appl. 94 (2001), no. 1, 105-134. https://doi.org/10.1016/S0304-4149(01)00078-3
- G. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 3, 561-574. https://doi.org/10.1017/S0305004100065750
- S. Chen and Z. Lin, Almost sure max-limits for nonstationary Gaussian sequence, Statist. Probab. Lett. 76 (2006), no. 11, 1175-1184. https://doi.org/10.1016/j.spl.2005.12.018
- S. Cheng, L. Peng, and Y. Qi, Almost sure convergence in extreme value theory, Math. Nachr. 190 (1998), 43-50. https://doi.org/10.1002/mana.19981900104
- E. Csaki and K. Gonchigdanzan, Almost sure limit theorems for the maximum of sta- tionary Gaussian sequences, Statist. Probab. Lett. 58 (2002), 195-203. https://doi.org/10.1016/S0167-7152(02)00128-1
- M. Dudzinski, A note on the almost sure central limit theorem for some dependent random variables, Statist. Probab. Lett. 61 (2003), 31-40. https://doi.org/10.1016/S0167-7152(02)00291-2
- M. Dudzinski, The almost sure central limit theorems in the joint version for the maxima and sums of certain stationary Gaussian sequences, Statist. Probab. Lett. 78 (2008), 347-357. https://doi.org/10.1016/j.spl.2007.07.007
- M. Dudzinski and P. Gorka, The almost sure central limit theorems for the maxima of sums under some new weak dependence assumptions, Acta Math. Sin. (Engl. Ser.) 29 (2013), 429-448. https://doi.org/10.1007/s10114-013-1388-9
- I. Fazekas and Z. Rychlik, Almost sure functional limit theorems, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 56 (2002), 1-18.
- E. W. Frees and E. A. Valdez, Understanding relationships using copulas, N. Am. Actuar. J. 2 (1998), no. 1, 1-25. https://doi.org/10.1080/10920277.1998.10595667
- K. Gonchigdanzan and G. Rempa la, A note on the almost sure limit theorem for the product of partial sums, Appl. Math. Lett. 19 (2006), no. 2, 191-196. https://doi.org/10.1016/j.aml.2005.06.002
- S. Hormann, A note on the almost sure convergence of central order statistics, Probab. Math. Statist. 25 (2005), 317-329.
- C. H. Kimberling, A probabilistic interpretation of complete monotonicity, Aequationes Math. 10 (1974), 152-164. https://doi.org/10.1007/BF01832852
- M. Lacey and W. Philipp, A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), no. 3, 201-205. https://doi.org/10.1016/0167-7152(90)90056-D
- A. W. Marshall and I. Olkin, Families of multivariate distributions, J. Amer. Statist. Assoc. 83 (1988), no. 403, 834-841. https://doi.org/10.1080/01621459.1988.10478671
- P. Matu la, On almost sure central limit theorem for associated random variables, Probab. Math. Statist. 18 (1998), no. 2, 411-416.
- A. J. McNeil and J. Neslehova, Available on the following website, http://www- 1.ms.ut.ee/tartu07/presentations/mcneil.pdf.
-
A. J. McNeil and J. Neslehova, Multivariate Archimedean copulas, d-monotone functions and
${\ell}_1$ -norm sym-metric distributions, Ann. Statist. 37 (2009), no. 5B, 3059-3097. https://doi.org/10.1214/07-AOS556 - J. Mielniczuk, Some remarks on the almost sure central limit theorem for dependent sequences, In: Limit theorems in Probability and Statistics II (I. Berkes, E. Csaki, M. Csorgo, eds.), Bolyai Institute Publications, Budapest, pp. 391-403, 2002.
- M. Peligrad and Q. Shao, A note on the almost sure central limit theorem for weakly dependent random variables, Statist. Probab. Lett. 22 (1995), no. 2, 131-136. https://doi.org/10.1016/0167-7152(94)00059-H
- L. Peng and Y. Qi, Almost sure convergence of the distributional limit theorem for order statistics, Probab. Math. Statist. 23 (2003), no. 2, 217-228.
- Z. Peng, J. Li, and S. Nadarajah, Almost sure convergence of extreme order statistics, Electron. J. Statist. 3 (2009), 546-556. https://doi.org/10.1214/08-EJS303
- P. Schatte, On the central limit theorem with almost sure convergence, Probab. Math. Statist. 11 (1991), 237-246.
- A. Sklar, Fonctions de repartition r n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.
- A. Sklar, Random variables, distribution functions and Copulas - a personal look back- ward and forward, In: Ruschendorf, L., Schweizer, B., Taylor, M.D. (Eds.), Distributions with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Hayward, CA, pp. 1-14, 1996.
- U. Stadtmuller, Almost sure versions of distributional limit theorems for certain order statistics, Statist. Probab. Lett. 58 (2002), no. 4, 413-426. https://doi.org/10.1016/S0167-7152(02)00156-6
- Z. Tan, Almost sure central limit theorem for exceedance point processes of stationary sequences, Braz. J. Probab. Statist. 29 (2015), no. 3, 717-731. https://doi.org/10.1214/14-BJPS242
- M. V. Wuthrich, Extreme value theory and Archimedean copulas, Scand. Actuar. J. 104 (2004), no. 3, 211-228.
- S. Zhao, Z. Peng, and S. Wu, Almost sure convergence for the maximum and the sum of nonstationary Guassian sequences, J. Inequal. Appl. 2010 (2010), Art. ID 856495, 14 pp.