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ON SOME APPLICATIONS OF THE ARCHIMEDEAN

COPULAS IN THE PROOFS OF THE ALMOST SURE
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Marcin Dudziński and Konrad Furmańczyk

Abstract. Our goal is to establish and prove the almost sure central

limit theorems for some order statistics
{

M
(k)
n

}

, k = 1, 2, . . ., formed

by stochastic processes (X1, X2, . . . ,Xn), n ∈ N , the distributions of
which are defined by certain Archimedean copulas. Some properties of
generators of such the copulas are intensively used in our proofs. The
first class of theorems stated and proved in the paper concerns sequences
of ordinary maxima {Mn}, the second class of the presented results and

proofs applies for sequences of the second largest maxima
{

M
(2)
n

}

and

the third (and the last) part of our investigations is devoted to the proofs
of the almost sure central limit theorems for the k-th largest maxima
{

M
(k)
n

}

in general. The assumptions imposed in the first two of the

mentioned groups of claims significantly differ from the conditions used
in the last - the most general - case.

1. Introduction and preliminaries

Starting with the notable papers by Brosamler [2] and Schatte [23], the
almost sure versions of limit theorems have been studied by a large number
of authors. These types of limit theorems are commonly known as the almost
sure central limit theorems (ASCLTs). The following property is investigated
in the research concerning the ASCLTs. Namely, let: X1, X2, . . . , Xi, . . . be
some r.v.’s, f1, f2, . . . , fi, . . . denote some real-valued, measurable functions,
defined on R,R2, . . . ,Ri, . . ., respectively; we seek conditions under which the
following property is satisfied for some nondegenerate cdf H

(1) lim
N→∞

1

DN

N
∑

n=1

dnI (fn (X1, . . . , Xn) ≤ x) = H (x) a.s. for all x ∈ CH ,
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where: {dn} is some sequence of weights, DN =
∑N

n=1 dn, I denotes the indi-
cator function, and: a.s., CH stand for the almost sure convergence and the
set of continuity points of function H , respectively.

The subject matter regarding the ASCLTs has drawn an immense attention
since the publication of the two above mentioned papers and a large amount
of works devoted to the proofs of (1) for various classes of functions fn and
random sequences {Xi} have been published over the last twenty-five years
or so. We cite in this context the articles by: Berkes and Csáki [1], Chen
and Lin [3], Cheng et al. [4], Csáki and Gonchigdanzan [5], Dudziński [6]-[7],
Dudziński and Górka [8], Gonchigdanzan and Rempa la [11], Lacey and Philipp
[14], Matu la [16], Mielniczuk [19], Peligrad and Shao [20], and Zhao et al. [29],
among others. Functions fn included different kinds of functions of r.v.’s, e.g.,
partial sums (see [1], [6], [14], [16], [19], [20]), products of partial sums (see
[11]), maxima (see [1], [3]-[5]), maxima of sums (see [1], [8]), and - jointly -
maxima and sums as well (see [7], [29]). It is worth noticing that not only
the indicator functions need to be considered with regard to this issue (see e.g.
Fazekas and Rychlik [9]); we say about the functional almost sure central limit
theorem in this case.

With reference to the ASCLT for order statistics (the k-th largest maxima),
which we are mostly concerned with in our work, there are several papers
dealing with this topic. We should mention the papers by: Hörmann [12],
Peng L. and Qi [21], Peng Z. et al. [22], Stadtmüller [26], and Tan [27] in this
place.

Our principal objective is to prove the property in (1) with: dn = 1/n,

DN ∼ logN , fn (X1, . . . , Xn) = M
(k)
n , k = 1, 2, where M

(k)
n stands for the k-th

largest maximum of X1, . . . , Xn. The assumptions imposed in our assertions
are strictly connected with the notions of the so-called Archimedean copulas
and their generators. For this reason, we shall introduce some definitions and
properties related to copulas, and to the Archimedean copulas in particular.
Let us begin with the general definition of copula.

Definition 1.1. A d-dimensional function C: [0, 1]
d → [0, 1], d ≥ 2, defined

on the unit cube [0, 1]d, is a d-dimensional copula if C is a joint cdf of a d-
dimensional random vector with uniform-[0, 1] marginals, i.e.,

C (u1, u2, . . . , ud) = P (U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud) ,

where all of Ui, i = 1, 2, . . . , d, have an uniform-[0, 1] cdf.

The theoretical groundwork for an area concerning the applications of copu-
las has been laid in the papers by Sklar [24]-[25], where the following celebrated
claim has been stated among some other valuable results.

Theorem 1.1 (Sklar’s theorem). For a given multivariate (joint) cdf F of a

random vector (X1, . . . , Xd) with marginal cdf’s F1, . . . , Fd, d ≥ 2, there exists
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a unique copula C satisfying

(2) F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) .

This copula is unique if the F ′
is, i = 1, . . . , d, are continuous.

Conversely, for a given copula C: [0, 1]d → [0, 1] and marginal cdf’s F1, . . .,
Fd, the relation (2) defines a multivariate distribution of (X1, . . . , Xd) with

margins Xi having some cdf’s Fi, i = 1, . . . , d, respectively.

In view of Sklar’s theorem, we may treat a copula as a structure describing
the dependence between the coordinates of the random vector (X1, . . . , Xd).
Indeed, (2) means that C couples the marginal cdf’s Fi to the joint cdf F .
Simultaneously, due to Sklar’s proposition, we are also able to decouple the
dependence structure into the corresponding marginals.

In our investigations leading to the proof of the ASCLT for some order
statistics, we are concerned with a special class of copulas, commonly known
as the Archimedean copulas. Before we define the Archimedean copula, we will
introduce the notion of copula’s generator.

Definition 1.2. Suppose that d ≥ 2 and Ψ: [0, 1] → [0,∞] is a strictly de-
creasing, convex function satisfying the conditions Ψ (0) = ∞ and Ψ (1) = 0.
Let for xi ∈ [0, 1], i = 1, . . . , d,

(3) CΨ (x1, . . . , xd) = Ψ−1

(

d
∑

i=1

Ψ (xi)

)

.

The function Ψ is called a generator of the copula CΨ.

If d ≥ 3, CΨ is on the whole not a copula. However, the following statement
from Kimberling [13] gives a necessary and sufficient condition under which CΨ

is a copula for all d ≥ 2.

Theorem 1.2. Choose d ≥ 2. The function CΨ (x1, . . . , xd) in (3) is a copula

if and only if a generator Ψ has an inverse Ψ−1, which is completely monotonic

on [0,∞), i.e.,

(−1)
j dj

dzj
Ψ−1 (z) ≥ 0 for all j ∈ N and z ∈ [0,∞) .

We are now in a position to define the class of Archimedean copulas.

Definition 1.3. If Ψ−1 is completely monotonic on [0,∞), we say that CΨ

given by (3) is the so-called Archimedean copula.

In our research, we study the situation when the investigated sequence of
r.v.’s (Xi) is a stochastic process defined as follows. Namely, we assume that,
for any i ∈ N, a r.v. Xi has a marginal cdf F of the continuous type and
that, for any sequence (t1, t2, . . . , tn), of natural numbers, the n-dimensional
distribution of (Xt1 , Xt2 , . . . , Xtn) is defined by a certain Archimedean copula
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CΨn = CΨ having a generator Ψn = Ψ, not depending on n. It means that,
for any (x1, x2, . . . , xn) ∈ R

n,

P (Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtn ≤ xn) = Ψ−1

(

n
∑

i=1

Ψ (xi)

)

.

Thus, the considered r.v.’s (Xi) form an exchangeable sequence of identically
distributed r.v.’s with a common cdf F , such that, for any fixed n ≥ 2, n ∈ N,
the family of r.v.’s (X1, . . . , Xn) has the Archimedean copula CΨn = CΨ with
a generator Ψn = Ψ (both the Archimedean copula and its generator do not
depend on n).

It can be shown that under the assumption above, there exists a r.v. Θn =

Θ > 0, not depending on n, such that (Ψ)
−1

is the Laplace transform of Θ,
i.e.,

(4) (Ψ)−1 (z) = EΘ {exp (−Θ · z)} for any z ∈ [0,∞] ,

where, here and in further parts of our work, EΘ denotes the expected value
of appropriate r.v.

We also assume that, for any x ∈ R and θ ∈ supp Θ,

(5) P (Xi ≤ x|Θ = θ) = (G (x))
θ
, i = 1, 2, . . . , n,

for G = Gn, not depending on n and satisfying

(6) G (x) = exp {−Ψ (F (x))} .

It is known (see Marshall and Olkin [15] and Frees and Valdez [10]) that under
the conditions imposed above, X1, . . . , Xn are conditionally independent given
Θ = Θn (which, for recollection, does not depend on n).

The remainder of the paper is structured as follows. In Sections 2-3, we
formulate our major results, which are the corresponding ASCLTs for maxima

{Mn} or for the second largest maxima {M (2)
n } (see the statements in Section

2) and the ASCLT for the k-th largest maxima {M (k)
n } as well (see the state-

ment in Section 3 for this general case). In Section 4, some auxiliary results
necessary for the proofs of the ASCLTs for ordinary maxima and for the sec-
ond largest maxima are stated and proved. The mentioned proofs are given in
Section 5. Furthermore, in Section 6, the proofs of the ASCLTs for the k-th
largest maxima - the assertions established in Section 3 - are given. Appendix
containing comments on some of the assumed conditions has been added at the
end of our work.

2. Main results I (the ASCLTs for: {Mn}, {M
(2)
n

})

Our first principal result is the following ASCLT for ordinary maxima {Mn}
and for the second largest maxima {M (2)

n }.
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Theorem 2.1. (i) Suppose that {Xi} is a stochastic process defined as above,

i.e., it is a sequence of identically distributed r.v.’s of the continuous type, with

a common cdf F , such that, for any fixed n ≥ 2, n ∈ N, the family of r.v.’s

(X1, . . . , Xn) has the Archimedean copula CΨ with a generator Ψ. Furthermore,

assume that: CΨ is the Clayton copula, i.e., the copula with a generator of the

form Ψ (t) = 1
α (t−α − 1) for some α > 0, and that a numerical sequence {un}

fulfills one of the following conditions:

(7) n (1 − F (un)) ∼ 1/nε for some ε > 0,

or

(8) n (1 − F (un)) ∼ nε for some ε ∈ (1 − 1/ (1 + α) ; 1) ,

where, here and in subsequent parts of the paper, an ∼ bn stands for the property

that lim
n→∞

an/bn = 1.

Additionally, suppose that the property in (5) holds true with Θ and G, such

as in (4) and (6), respectively, as well as that Λ (Θ) is a r.v. satisfying

(9) lim
n→∞

n
{

1 − (G (un))
Θ
}

= Λ (Θ) a.s.

Then, we have

(10) lim
N→∞

1

logN

N
∑

n=1

1

n
I (Mn ≤ un) = EΘ

(

e−Λ(Θ)
)

a.s.,

where, here and throughout the whole paper, log x = ln (max (x, e)).
(ii) Suppose that: {Xi} is a stochastic process defined earlier, (9) holds true,

a numerical sequence {un} satisfies

(11) n (1 − F (un)) ∼ 1/nε for some ε > 1,

and a r.v. Λ (Θ) fulfills (9).
Then, we have

(12) lim
N→∞

1

logN

N
∑

n=1

1

n
I
(

M (2)
n ≤ un

)

= EΘ

{

e−Λ(Θ) (1 + Λ (Θ))
}

a.s.

We also prove the following ASCLT for ordinary maxima {Mn}.

Theorem 2.2. Suppose that {Xi} is a stochastic process defined earlier, i.e.,

it is a sequence of identically distributed r.v.’s of the continuous type, with a

common cdf F , such that, for any fixed n ≥ 2, n ∈ N, the family of r.v.’s

(X1, . . . , Xn) has the Archimedean copula CΨ with a generator Ψ. Moreover,

assume that: CΨ is the Gumbel copula, i.e., the copula with a generator of the

form Ψ (t) = (− ln t)
α
for some α > 1, the condition in (9) holds true, and a

numerical sequence {un} satisfies

(13) n (1 − F (un)) ∼ nε for some ε ∈ (1 − 1/α; 1) ,
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as well as that: (5) is valid with Θ and G, such as in (4) and (6), respectively,
and a r.v. Λ (Θ) fulfils (9). Then, (10) holds.

Theorems 2.1 and 2.2 together with Corollary 5.2 and Example 5.3, stated
by Wüthrich [28], straightforwardly imply the following two claims:

Corollary 2.1. Under the assumptions of Theorem 2.1 on {Xi}, we have:
(i) if F = uniform (0, 1) and xn ∼ 1/nε for some ε > 0, then:

(14) lim
N→∞

1

logN

N
∑

n=1

1

n
I (Mn ≤ 1 − xn/n) = 1 a.s.,

(ii) if F = uniform (0, 1) and xn ∼ nε for some ε ∈ (1 − 1/ (1 + α) ; 1),
where α > 0 is the corresponding parameter of the Clayton copula generator

Ψ (t) =
1

α
(t−α − 1), then:

(15) lim
N→∞

1

logN

N
∑

n=1

1

n
I (Mn ≤ 1 − xn/n) = 0 a.s.;

Corollary 2.2. Under the assumptions of Theorem 2.2 on {Xi}, we have that

if F = uniform (0, 1) and xn ∼ nε for some ε ∈ (0; 1/α), where α > 1 is the

parameter of the Gumbel copula generator Ψ (t) = (− ln t)α, we have

(16) lim
N→∞

1

logN

N
∑

n=1

1

n
I
(

Mn ≤ 1 − xn/n
1/α
)

= 0 a.s.

Remark 2.1. As has already been mentioned above, some explanations con-
cerning the form of assumptions (7), (8), (11) and (13) have been placed at the
end of our note.

3. Main results II (the ASCLTs for {M (k)
n

})

For the general case of order statistics of rank k, we may prove the following
assertions.

Theorem 3.1. Suppose that {Xi} is a stochastic process defined in Introduc-

tion and preliminaries, i.e., it is a sequence of identically distributed r.v.’s of

the continuous type, with a common cdf F , such that, for any fixed n ≥ 2,
n ∈ N, the family of r.v.’s (X1, . . . , Xn) has the Archimedean copula CΨ with

a generator Ψ. In addition, assume that: (5) holds true with Θ and G, such as

in (4) and (6), respectively, k is a fixed natural number satisfying the property

(17) EΘΘ2(k−1) < ∞,

as well as (9) is fulfilled for some r.v. Λ (Θ) and a numerical sequence {un}
obeys the condition

(18) un ≥ F−1
(

Ψ−1
(

C/nβ
))

for some generic constants C > 0 and β > 1.
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Then,

(19) lim
N→∞

1

logN

N
∑

n=1

1

n
I
(

M (k)
n ≤ un

)

= EΘ

{

e−Λ(Θ)
k−1
∑

s=0

(Λ (Θ))
s

s!

}

a.s.

Corollary 3.1. If Ψ (t) = (− ln t)
α
for some α > 1 (CΨ is the Gumbel copula)

and conditions: (4), (6), (17) are satisfied, as well as assumption (9) is fulfilled

for some r.v. Λ (Θ) and the following assumption is imposed on a numerical

sequence {un}
(20) lim

n→∞
n (1 − F (un)) = τ for some 0 ≤ τ < ∞,

we have

lim
N→∞

1

logN

N
∑

n=1

1

n
I
(

M (k)
n ≤ un

)

= EΘ

{

e−Λ(Θ)
k−1
∑

s=0

(Λ (Θ))
s

s!

}

a.s.,

where a r.v. Λ (Θ) has an expected value EΘ {Λ (Θ)} = τ .

Remark 3.1. It is worthwhile to mention that assumption (17) is satisfied if,
e.g., the following condition holds true

(21)
(

Ψ−1 (v)
)(2(k−1))

∣

∣

∣

v=0
< ∞,

where (Ψ−1(v))(j) stands for the j-th derivative of the inverse function (Ψ−1(v)).

This fact is justified in Appendix.

4. Auxiliary results necessary for the proofs of the ASCLTs for

ordinary maxima and for the second largest maxima

The objective of this section is to state and prove some lemmas, which will
be needed in the proofs of Theorems 2.1-2.2. First, we shall prove the following
result.

Lemma 4.1. Under the assumptions of Theorem 2.1(i) on {Xi}, Ψ, {un}, Θ
and G, we have for m < n

(22) |Cov (I (Mm ≤ um) , I (Mn ≤ un))| ≪ m/n + 1/nδ for some δ > 0,

where, here as well as in subsequent relations and derivations, a (m,n) ≪
b (m,n) (a (n) ≪ b (n)) stands for a (m,n) = O (b (m,n)) (a (n) = O (b (n)))
as m,n → ∞ (n → ∞).

Proof of Lemma 4.1. Let, for m < n, Mm,n := max (Xm+1, . . . , Xn). Observe
that:

|Cov (I (Mm ≤ um) , I (Mn ≤ un))|
= |Cov (I (Mm ≤ um) , I (Mn ≤ un) − I (Mm,n ≤ un))|

+ |Cov (I (Mm ≤ um) , I (Mm,n ≤ un))|
≤ 2E |I (Mn ≤ un) − I (Mm,n ≤ un)|
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+ |Cov (I (Mm ≤ um) , I (Mm,n ≤ un))| ,
and therefore,

|Cov (I (Mm ≤ um) , I (Mn ≤ un))|
≪ E |I (Mn ≤ un) − I (Mm,n ≤ un)|

+ |Cov (I (Mm ≤ um) , I (Mm,n ≤ un))|
=: A + B.(23)

First, we shall estimate the component A in (23). We have

E |I (Mn ≤ un) − I (Mm,n ≤ un)| = P (Mm,n ≤ un) − P (Mn ≤ un)

= EΘP (Mm,n ≤ un|Θ) − EΘP (Mn ≤ un|Θ) ,(24)

where Θ is a r.v. satisfying (4)-(5).
Due to the condition in (5) and the fact that X1, . . . , Xn are conditionally

independent given Θ, we obtain:

(25) EΘP (Mm,n ≤ un|Θ) = EΘ

{

(G (un))
Θ
}n−m

,

(26) EΘP (Mn ≤ un|Θ) = EΘ

{

(G (un))Θ
}n

.

Consequently, it follows from (24)-(26) that

(27) A = EΘ

[

{

(G (un))
Θ
}n−m

−
{

(G (un))
Θ
}n
]

.

By (27), the relation 0 ≤ (G (un))Θ ≤ 1 and the property that zn−m − zn <
m/n, if 0 ≤ z ≤ 1 and 1 ≤ m < n, we immediately get

(28) A < m/n.

Thus, it remains to estimate the term B in (23). Obviously, we have

(29)

B = |E [I (Mm ≤ um) I (Mm,n ≤ un)]

−EI (Mm ≤ um)EI (Mm,n ≤ un)|
= |EΘP (Mm ≤ um,Mm,n ≤ un|Θ)

− EΘP (Mm ≤ um|Θ)EΘP (Mm,n ≤ un|Θ)| .
In view of (5) and the fact that X1, . . . , Xn are conditionally independent given
a r.v. Θ, we obtain

(30) EΘP (Mm ≤ um,Mm,n ≤ un|Θ) = EΘ

[

{

G (um)
Θ
}m {

G (un)
Θ
}n−m

]

.

The relations in (25), (26) and (30) together with (29) imply

B =

∣

∣

∣

∣

EΘ

[

{

G (um)
Θ
}m {

G (un)
Θ
}n−m

]

(31)
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− EΘ

{

G (um)
Θ
}m

EΘ

{

G (un)
Θ
}n−m

∣

∣

∣

∣

.

Clearly, (31) may be rewritten as follows

B ≤
∣

∣

∣

∣

EΘ

[

{

G (um)
Θ
}m

(

{

G (un)
Θ
}n−m

−
{

G (un)
Θ
}n
)]∣

∣

∣

∣

+
∣

∣

∣
EΘ

[{

G (um)
Θ
}m ({

G (un)
Θ
}n

− EΘ

{

G (un)
Θ
}n)]∣

∣

∣

+

∣

∣

∣

∣

EΘ

{

G (um)
Θ
}m

(

EΘ

{

G (un)
Θ
}n

− EΘ

{

G (un)
Θ
}n−m

)
∣

∣

∣

∣

=: B1 + B2 + B3.(32)

This and the properties used in the estimation of A immediately yield

(33) B1 + B3 < 2 (m/n) .

Thus, we need to find the bound for B2 in (32).
Assume first that the assumption in (7) holds. Using the facts that both

{

G (um)
Θ
}m

and
{

G (un)
Θ
}n

−EΘ

{

G (un)
Θ
}n

are bounded r.v.’s with finite

moments of any finite orders, together with the Schwarz inequality and the

relation 0 ≤ EΘ

{

G (um)
Θ
}m

≤ 1, we obtain

B2 ≤
√

EΘ

[{

G (un)
Θ
}n

− EΘ

{

G (un)
Θ
}n]2

=

√

EΘ

{

G (un)
Θ
}2n

−
[

EΘ

{

G (un)
Θ
}n]2

.(34)

In addition, it follows from the relations on G in (6) and on Ψ−1 in (4) that:

EΘ

{

G (un)
Θ
}2n

= EΘ {G (un)}Θ2n
= EΘ [exp {−θ2nΨ (F (un))}]

= Ψ−1 (2nΨ (F (un))) ,(35)

[

EΘ

{

G (un)
Θ
}n]2

=
(

EΘ

{

G (un)
Θn
})2

= [EΘ {exp (−θnΨ (F (un)))}]
2

=
[

Ψ−1 (nΨ (F (un)))
]2

.(36)

Hence, by virtue of (34)-(36),
√

EΘ

[{

G (un)
Θ
}n

− EΘ

{

G (un)
Θ
}n]2

=

√

Ψ−1 (2nΨ (F (un))) − [Ψ−1 (nΨ (F (un)))]2

≤
√

∣

∣Ψ−1 (2nΨ (F (un))) − Ψ−1 (nΨ (F (un)))
∣

∣Ψ−1 (nΨ (F (un)))
+
∣

∣Ψ−1 (nΨ (F (un))) − Ψ−1 (0)
∣

∣Ψ−1 (2nΨ (F (un)))
,(37)
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where the last relation follows from the fact that |z − xy| ≤ |z − x| |y| +
|y − 1| |z| for any real-valued x, y and z.

This and the property that the inverse of Ψ (t) = 1
α (t−α − 1) (i.e., Ψ−1 (t) =

(1 + αt)
−1/α

) is Lipschitz with the Lipschitz constant 1, as well as the facts
that it is a decreasing, positive and bounded by 1 function, imply

(38)

√

EΘ

[{

G (un)
Θ
}n

− EΘ

{

G (un)
Θ
}n]2

≤
√

2nΨ (F (un)).

Let, here and throughout the whole paper, τn := n (1 − F (un)). Observe that

nΨ (F (un)) = n

[

1

α

(

(F (un))−α − 1
)

]

= n

[

1

α

(

1 − τn
n

)−α
]

∼ n

[

1

α
α
(τn
n

)

]

= τn = n (1 − F (un)) .(39)

It stems from (39) and assumption (7) that

(40) nΨ (F (un)) ≪ 1/nε for some ε > 0.

Thus, in view of (34), (38) and (40), we get

(41) B2 ≪ 1/nε/2 for some ε > 0, if (7) holds.

Assume now that assumption (8) is satisfied. Due to (34)-(36), we have

B2 ≤
√

EΘ

{

G (un)Θ
}2n

−
[

EΘ

{

G (un)Θ
}n]2

=

√

Ψ−1 (2nΨ (F (un))) − [Ψ−1 (nΨ (F (un)))]
2

≤
√

Ψ−1 (2nΨ (F (un))).(42)

Furthermore, by virtue of (39) and (8), we obtain:

(43) 2nΨ (F (un)) = 2τn = 2n (1 − F (un)) ∼ 2nε

for some ε ∈ (1 − 1/ (1 + α) ; 1), and

Ψ (1 − F (un)) =
1

α

(

(1 − F (un))
−α − 1

)

=
1

α

(

(1 − F (un))
−α − 1

)

≤ 1

α

1

(1 − F (un))α
=

nα

α

1

[n (1 − F (un))]α
∼ nα

α

1

nεα
=

1

α
nα(1−ε).(44)

In addition, it follows from (8) that ε > 1 − 1/ (1 + α), and equivalently that:
ε > α/ (1 + α), 1/ (1 + α) > 1 − ε. Consequently, ε > α (1 − ε). This and the
relations in (43)-(44) yield

2nΨ (F (un)) > Ψ (1 − F (un)) for all sufficiently large n.

The inequality above and the fact that Ψ−1 is a decreasing function imply

(45) Ψ−1 (2nΨ (F (un))) ≪ Ψ−1 (Ψ (1 − F (un))) = 1 − F (un) .



ON SOME APPLICATIONS OF THE ARCHIMEDEAN COPULAS 849

Therefore, by (42), (45) and assumption (8), we have

B2 ≪
√

1 − F (un) ≪
√

nε

n
= 1/n(1−ε)/2 for some ε ∈ (1 − 1/ (1 + α) ; 1) .

Since ε < 1, we get ε1 := (1 − ε) /2 > 0 and hence,

(46) B2 ≪ 1/nε1 for some ε1 > 0, if (8) holds.

Thus, due to (32), (33), (41) and (46), we conclude

(47) B ≪ m/n + 1/nδ for some δ > 0.

Finally, the relations in (23), (28) and (47) imply a desired result in (22). �

The following claim will be employed in the proof of Theorem 2.2.

Lemma 4.2. Under the assumptions of Theorem 2.2 on {Xi}, Ψ, {un}, Θ
and G, we have for m < n

(48) |Cov (I (Mm ≤ um) , I (Mn ≤ un))| ≪ m/n + 1/nδ for some δ > 0.

Proof of Lemma 4.2. The idea of the proof is similar to the idea used in the
proof of Lemma 4.1. The only difference concerns the estimation of component
B2. Recall that, by (42), we may bound B2 as follows

(49) B2 ≤
√

Ψ−1 (2nΨ (F (un))).

As previously, we set τn := n (1 − F (un)). By virtue of assumption (13), we
get:

2nΨ (F (un)) = 2n (− lnF (un))
α ∼ 2n

(

− ln
(

1 − τn
n

))α

= 2n
1

nα

(

−n ln
(

1 − τn
n

))α

∼ 2n1−α
(

− ln
(

1 − τn
n

)n)α

∼ 2n1−α (− ln exp (−τn))
α ∼ 2n1−α (τn)

α ∼ 2n1−α (nε)
α

= 2n1−α(1−ε),(50)

and

Ψ (1 − F (un)) =
(

− ln (1 − F (un))
−α
)

=
(

− ln
τn
n

)α

=

(

ln
n

τn

)α

∼
(

lnn1−ε
)α

= (1 − ε)α (lnn)α .(51)

Since 1−1/α < ε < 1, we have α (1 − ε) < 1, and consequently, 1−α (1 − ε) >
0. This and the relations in (50)-(51) yield

2nΨ (F (un)) > Ψ (1 − F (un)) for all sufficiently large n.

Therefore, as Ψ−1 is decreasing, we get

(52) Ψ−1 (2nΨ (F (un))) ≪ Ψ−1 (Ψ (1 − F (un))) = 1 − F (un) .

The relations in (49) and (52) together with assumption (13) imply

B2 ≤
√

Ψ−1 (2nΨ (F (un))) ≪
√

Ψ−1 (Ψ (1 − F (un))) =
√

1 − F (un)
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≪
√

nε

n
= 1/n(1−ε)/2 for some ε ∈ (0; 1) .(53)

Putting ε2 := (1 − ε) /2, we obtain, due to (53),

(54) B2 ≤ 1/nε2 for some ε2 ∈ (0; 1) .

As relation (54) - for B2 - holds true and the other needed estimations - of
components A and B1 (see the notations in the proof of Lemma 4.1) - are
identical as in the proof of Lemma 4.1, we obtain that the relation in (48), i.e.,
the result we wish to establish, is satisfied. �

The statement below will be needed in order to prove both Theorem 2.1 and
Theorem 2.2.

Lemma 4.3. Under the assumptions of Theorem 2.1(i) or Theorem 2.2, on

{Xi}, Ψ, {un}, Θ, G and Λ (Θ), we obtain

(55) lim
n→∞

P (Mn ≤ un) = EΘ

(

e−Λ(Θ)
)

.

Proof. Following derivation (26) from the proof of Lemma 4.1 and the fact that
P (Mn ≤ un) = EΘP (Mn ≤ un|Θ), we immediately get

(56) lim
n→∞

P (Mn ≤ un) = lim
n→∞

EΘ

{

(G (un))
Θ
}n

.

In addition, since 0 ≤
{

(G (un))
Θ
}n

≤ 1, it follows from the Lebesgue theorem

on passing to the limit under the integral sign that

(57) lim
n→∞

EΘ

{

(G (un))
Θ
}n

= EΘ

(

lim
n→∞

{

(G (un))
Θ
}n)

.

Furthermore, a Poisson approximation to the binomial distribution with npn =

nP (X1 > un|Θ) = n
{

1 − (G (un))
Θ
}

and the property that, due to assump-

tion (9), n
{

1 − (G (un))
Θ
}

a.s.→ Λ (Θ) as n → ∞, imply

(58) lim
n→∞

{

(G (un))
Θ
}n

= e−Λ(Θ) a.s.

In view of (56)-(58), we have

lim
n→∞

P (Mn ≤ un) = EΘ

(

e−Λ(Θ)
)

,

which is a desired claim in (55). �

The following lemma will be applied in the proof of Theorem 2.1(ii).

Lemma 4.4. Under the assumptions of Theorem 2.1(ii) on {Xi}, Ψ, {un}, Θ
and G, we have for m < n

(59) E
∣

∣

∣
I
(

M (2)
n ≤ un

)

− I
(

M (2)
m,n ≤ un

)∣

∣

∣
≪ m/n,

where M
(2)
m,n denotes the second largest maximum among Xm+1, . . . , Xn.
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Proof. Obviously, we have

E
∣

∣

∣
I
(

M (2)
n ≤ un

)

− I
(

M (2)
m,n ≤ un

)∣

∣

∣

= P
(

M (2)
m,n ≤ un

)

− P
(

M (2)
n ≤ un

)

= EΘP
(

M (2)
m,n ≤ un

∣

∣

∣
Θ
)

− EΘP
(

M (2)
n ≤ un

∣

∣

∣
Θ
)

,(60)

where Θ is a r.v. satisfying (4)-(5).
By the definition of the second largest maxima, as well as the condition in

(5) and the fact that X1, . . . , Xn are conditionally independent given Θ, we
obtain:

EΘP
(

M (2)
m,n ≤ un

∣

∣

∣
Θ
)

=

1
∑

s=0

(

n−m

s

)

EΘ

[

{

1 − (G (un))
Θ
}s {

(G (un))
Θ
}n−m−s

]

,(61)

EΘP
(

M (2)
n ≤ un

∣

∣

∣
Θ
)

=

1
∑

s=0

(

n

s

)

EΘ

[

{

1 − (G (un))Θ
}s {

(G (un))Θ
}n−s

]

.(62)

It follows from (61)-(62) that

C := EΘP
(

M (2)
m,n ≤ un

∣

∣

∣
Θ
)

− EΘP
(

M (2)
n ≤ un

∣

∣

∣
Θ
)

≤
1
∑

s=0

(

n−m

s

)

EΘ

[

{

1 − (G (un))
Θ
}s
(

{

(G (un))
Θ
}n−m−s

−
{

(G (un))
Θ
}n−s

)]

= EΘ

[

{

(G (un))
Θ
}n−m

−
{

(G (un))
Θ
}n
]

+ (n−m− 1)EΘ

[

{

1 − (G (un))
Θ
}

(

{

(G (un))
Θ
}n−m−1

−
{

(G (un))
Θ
}n−1

)]

=: C1 + C2.(63)

Our purpose now is to estimate the terms C1-C2 in (63). From the facts that:

zn−m − zn < m/n, if 0 ≤ z ≤ 1 and 1 ≤ m < n, and 0 ≤ G (un)
Θ ≤ 1, we

immediately conclude

(64) C1 < m/n.

In order to find the bound for C2 in (63), recall that, by the conditions of
Theorem 2.1(ii), the family of r.v.’s (X1, . . . , Xn) has the Clayton copula (i.e.,
the copula with a generator of the form Ψ (t) = 1

α (t−α − 1) for some α > 0)
and (11) is satisfied.
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Observe that, since: zn−m−1 − zn−1 = zn−1−m − zn−1 < m/ (n− 1), pro-

vided 0 ≤ z ≤ 1 and 1 ≤ m < n− 1, and 0 ≤ G (un)
Θ ≤ 1, we have

C2 < nEΘ

{

1 −G (un)
Θ
} m

n− 1
= nEΘ

{

1 −G (un)
Θ
}

(

m− 1

n− 1
+

1

n− 1

)

≪ nEΘ

{

1 −G (un)
Θ
}

(

m

n
+

1

n

)

≪ nEΘ

{

1 −G (un)
Θ
} m

n
.(65)

Moreover, by the relations on Ψ−1 and G in (4) and (5)-(6), respectively, we
get

EΘ

{

1 −G (un)
Θ
}

= 1 − EΘ

{

G (un)
Θ
}

= 1 − EΘ [exp {−ΘΨ (F (un))}]

= 1 − Ψ−1 (Ψ (F (un))) = 1 − F (un) .(66)

Derivation (66) and assumption (11) yield

(67) nEΘ

{

1 −G (un)
Θ
}

= n (1 − F (un)) ≪ 1/nε for some ε > 1.

Therefore, due to (65) and (67), we may write that

(68) C2 ≪ m/n.

By virtue of (60), (63), (64) and (68), we obtain

E
∣

∣

∣
I
(

M (2)
n ≤ un

)

− I
(

M (2)
m,n ≤ un

)∣

∣

∣

= EΘP
(

M (2)
m,n ≤ un

∣

∣

∣
Θ
)

− EΘP
(

M (2)
n ≤ un

∣

∣

∣
Θ
)

= C ≤ C1 + C2 ≪ m/n,(69)

which is a desired claim in (59). �

The following lemma will also be employed in the proof of Theorem 2.1(ii).

Lemma 4.5. Under the assumptions of Theorem 2.1(ii) on {Xi}, Ψ, {un}, Θ
and G, we have for m < n

(70)
∣

∣

∣
Cov

(

I
(

M (2)
m ≤ um

)

, I
(

M (2)
m,n ≤ un

))∣

∣

∣
≪ m/n + 1/nδ for some δ > 0.

Proof. It is clear that
∣

∣

∣
Cov

(

I
(

M (2)
m ≤ um

)

, I
(

M (2)
m,n ≤ un

))∣

∣

∣

=
∣

∣

∣
P
(

M (2)
m ≤ um,M (2)

m,n ≤ un

)

− P
(

M (2)
m ≤ um

)

P
(

M (2)
m,n ≤ un

)
∣

∣

∣

=
∣

∣

∣
EΘP

(

M (2)
m ≤ um,M (2)

m,n ≤ un

∣

∣

∣
Θ
)

−EΘP
(

M (2)
m ≤ um

∣

∣

∣
Θ
)

EΘP
(

M (2)
m,n ≤ un

∣

∣

∣
Θ
)∣

∣

∣
,(71)

where Θ is a r.v. satisfying (4)-(5).
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By the definition of the second largest maxima, as well as the condition in
(5) and the fact that X1, . . . , Xn are conditionally independent given Θ, we
have, in view of (71),

∣

∣

∣
Cov

(

I
(

M (2)
m ≤ um

)

, I
(

M (2)
m,n ≤ un

))∣

∣

∣

=

1
∑

s1=0

1
∑

s2=0

(

m

s1

)(

n−m

s2

)

D (s1, s2,m, n) ,(72)

where

D (s1, s2,m, n) :=
∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}s1 {

G (um)
Θ
}m−s1 {

1 −G (un)
Θ
}s2 {

G (un)
Θ
}n−m−s2

]

−EΘ

[{

1–G (um)
Θ
}s1 {

G (um)
Θ
}m–s1]

EΘ

[{

1–G (un)
Θ
}s2 {

G (un)
Θ
}n–m–s2]∣

∣

∣
.

Therefore, we may write that

(73) H :=
∣

∣

∣
Cov

(

I
(

M (2)
m ≤ um

)

, I
(

M (2)
m,n ≤ un

))∣

∣

∣
≤ H1 + H2 + H3 + H4,

where:

H1 :=

∣

∣

∣

∣

EΘ

[

{

G (um)
Θ
}m {

G (un)
Θ
}n−m

]

−EΘ

{

G (um)Θ
}m

EΘ

{

G (un)Θ
}n−m

∣

∣

∣

∣

,

H2 := m

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1 {

G (un)
Θ
}n−m

]

−EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1

]

EΘ

{

G (un)
Θ
}n−m

∣

∣

∣

∣

,

H3 := (n−m)

∣

∣

∣

∣

EΘ

[

{

G (um)Θ
}m {

1 −G (un)Θ
}{

G (un)Θ
}n−m−1

]

−EΘ

{

G (um)
Θ
}m

EΘ

[

{

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]∣

∣

∣

∣

,

H4 := m (n−m)

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m–1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n–m–1

]

−EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1

]

EΘ

[

{

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]
∣

∣

∣

∣

.

Thus, we need to give the bounds for H1–H4. Recall that, due to our assump-
tions, the family of r.v.’s (X1, . . . , Xn) has the Clayton copula and condition
(11) is satisfied. Reasoning as in the estimation of the term

B =

∣

∣

∣

∣

EΘ

[

{

G (um)
Θ
}m {

G (un)
Θ
}n−m

]

− EΘ

{

G (um)
Θ
}m

EΘ

{

G (un)
Θ
}n−m

∣

∣

∣

∣
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in the proof of Lemma 4.1, for the case when assumption (7) - containing the
constraint in (11) - is fulfilled (see the notations and relations in (31)-(47)), we
immediately obtain

(74) H1 = B ≤ B1 + B2 + B3 ≪ m/n + 1/nδ1 for some δ1 > 0,

where B1-B3 are defined in the same manner as in the mentioned proof of
Lemma 4.1.

Our aim now is to find the estimate for H2 in (73). We have

H2 ≤ m

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1 {

G (un)
Θ
}n−m

]

−EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1 {

G (un)
Θ
}n
]
∣

∣

∣

∣

+ m

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1 {

G (un)
Θ
}n
]

−EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1

]

EΘ

{

G (un)
Θ
}n
∣

∣

∣

∣

+ m

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1

]

EΘ

{

G (un)
Θ
}n

−EΘ

[

{

1 −G (um)Θ
}{

G (um)Θ
}m−1

]

EΘ

{

G (un)Θ
}n−m

∣

∣

∣

∣

=: H21 + H22 + H23.(75)

As 0 ≤
{

G (um)
Θ
}m−1

≤ 1, it is clear that

H21 + H23 ≤ mEΘ

[

{

1 −G (um)
Θ
}

(

{

G (un)
Θ
}n−m

−
{

G (un)
Θ
}n
)]

+ mEΘ

{

1 −G (um)Θ
}

EΘ

(

{

G (un)Θ
}n−m

−
{

G (un)Θ
}n
)

< 2mEΘ

{

1 −G (um)
Θ
} m

n
,(76)

where the last relation follows from the property that zn−m − zn < m/n, if
0 ≤ z ≤ 1 and 1 ≤ m < n.

Following the derivation in (66) and using assumption (11), we straightfor-
wardly get

(77) EΘ

{

1 −G (um)
Θ
}

= 1 − F (um) ∼ 1/m1+ε for some ε > 1.

The relations in (76)-(77) imply

(78) H21 + H23 ≪ m
1

m1+ε

m

n
≤ m

n
.
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Thus, in order to complete the estimation of H2, we only need to give the

bound for H22 in (75). Since 0 ≤
{

G (um)
Θ
}m−1

≤ 1, we may write that

H22 ≤ mEΘ

[{

1 −G (um)Θ
} ∣

∣

∣

{

G (un)Θ
}n

− EΘ

{

G (un)Θ
}n∣
∣

∣

]

.

Since in addition, the r.v.’s 1 −G (um)Θ and
∣

∣

∣

{

G (un)Θ
}n

− EΘ

{

G (un)Θ
}n∣
∣

∣

are bounded and have finite moments of any finite orders, we obtain, in view
of the Schwarz inequality,

(79) H22 ≤ m

√

EΘ

{

1−G (um)Θ
}2
√

EΘ

[{

G (un)Θ
}n

−EΘ

{

G (un)Θ
}n]2

.

Since 0 ≤ 1 −G (um)Θ ≤ 1 and (77) holds, we have
√

EΘ

{

1 −G (um)
Θ
}2

≤
√

EΘ

{

1 −G (um)
Θ
}

=
√

1 − F (um)

≪ 1/m(1+ε)/2 for some ε > 1.(80)

Furthermore, it follows from (38)-(39) and condition (11) that
√

EΘ

[{

G (un)Θ
}n

− EΘ

{

G (un)Θ
}n]2

≤
√

2nΨ (F (un))

≪
√

n (1 − F (un))

≪ 1/nε/2 for some ε > 1.(81)

By virtue of (79)-(81) and the fact that ε > 1, we obtain

H22 ≪ m
1

m(1+ε)/2

1

nε/2
=

m

m(1+ε)/2

1

nε/2
≤ 1

nε/2
for some ε > 1,

which, by putting δ2 := ε/2, yields

(82) H22 ≪ 1/nδ2 for some δ2 > 0.

Thus, due to (75), (78) and (82), we have

(83) H2 ≪ m/n + 1/nδ2 for some δ2 > 0.

Our purpose now is to give the bound for H3 in (73). We may write that

H3 ≤ n

∣

∣

∣

∣

EΘ

[

{

G (um)
Θ
}m {

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]

−EΘ

[{

G (um)
Θ
}m {

1 −G (un)
Θ
}{

G (un)
Θ
}n]∣

∣

∣

+ n
∣

∣

∣
EΘ

[{

G (um)
Θ
}m {

1 −G (un)
Θ
}{

G (un)
Θ
}n]

−EΘ

{

G (um)
Θ
}m

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]∣

∣

∣
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+ n
∣

∣

∣
EΘ

{

G (um)
Θ
}m

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

−EΘ

{

G (um)
Θ
}m

EΘ

[

{

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]∣

∣

∣

∣

=: H31 + H32 + H33.(84)

By the property zn−m−1 − zn = zn−(m+1) − zn < (m + 1) /n, if 0 ≤ z ≤ 1 and

1 ≤ m + 1 < n, and the facts that: 0 ≤ G (un)
Θ ≤ 1, 0 ≤

{

G (um)
Θ
}m

≤ 1,

we have

H31 + H33 ≤ 2nEΘ

[

{

1 −G (un)
Θ
}

(

{

G (un)
Θ
}n−m−1

−
{

G (un)
Θ
}n
)]

< 2nEΘ

{

1 −G (un)Θ
}

(

m + 1

n

)

= 2nEΘ

{

1 −G (un)
Θ
}

(

m

n
+

1

n

)

.

This and the fact that

(85) EΘ

{

1 −G (un)
Θ
}

= 1 − F (un) ∼ 1/n1+ε for some ε > 1,

where the relations in (85) follow from (66) and assumption (11), imply

(86) H31 + H33 < 2n (1 − F (un))

(

m

n
+

1

n

)

≪ 1

nε

m

n
<

m

n
.

Thus, in order to complete the estimation of H3, it remains to give the bound
for the term H32 in (84). It is clear that

H32 ≤ nEΘ

[{

G (um)
Θ
}m

×
∣

∣

∣

{

1 −G (un)
Θ
}{

G (un)
Θ
}n

− EΘ

{

1 −G (un)
Θ
}{

G (un)
Θ
}n∣
∣

∣

]

.

Therefore, in view of the Schwarz inequality,

H32 ≤ n

√

EΘ

{

G (um)
Θ
}2m

√

D2
Θ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

,

where D2
Θ [·] stands for the variance of the corresponding r.v.

Since: 0 ≤
{

G (um)
Θ
}2m

≤ 1, 0 ≤
{

G (un)
Θ
}n

≤ 1, and

D2
Θ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

≤ EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]2

,

we obtain

H32 ≤ n

√

EΘ

{

1 −G (un)
Θ
}2

≤ n

√

EΘ

{

1 −G (un)
Θ
}

= n
√

(1 − F (un)),
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which, due to (11), implies that

H32 ≪ n
1

n(1+ε)/2
=

1

n(ε−1)/2
for some ε > 1.

Consequently, putting δ3 := (ε− 1) /2, we get

(87) H32 ≪ 1/nδ3 for some δ3 > 0.

By virtue of (84), (86) and (87), we conclude

(88) H3 ≪ m/n + 1/nδ3 for some δ3 > 0.

Thus, it remains to estimate the component H4 in (73). We may write that

H4 ≤ mn

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]

−EΘ

{

1 −G (um)
Θ
}

EΘ

[

{

G (um)
Θ
}m−1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]
∣

∣

∣

∣

+mn

∣

∣

∣

∣

EΘ

{

1 −G (um)
Θ
}

EΘ

[

{

G (um)
Θ
}m–1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n–m–1

]

−EΘ

{

1 −G (um)
Θ
}

EΘ

[

{

G (um)
Θ
}m−1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n
]
∣

∣

∣

∣

+mn

∣

∣

∣

∣

EΘ

{

1 −G (um)Θ
}

EΘ

[

{

G (um)Θ
}m−1 {

1 −G (un)Θ
}{

G (un)Θ
}n
]

−EΘ

{

1 −G (um)
Θ
}

EΘ

{

G (um)
Θ
}m−1

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

∣

∣

∣

∣

+mn

∣

∣

∣

∣

EΘ

{

1 −G (um)
Θ
}

EΘ

{

G (um)
Θ
}m−1

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

−EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1

]

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

∣

∣

∣

∣

+mn

∣

∣

∣

∣

EΘ

[

{

1 −G (um)
Θ
}{

G (um)
Θ
}m−1

]

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

−EΘ

[

{

1 −G (um)Θ
}{

G (um)Θ
}m−1

]

EΘ

[

{

1 −G (un)Θ
}{

G (un)Θ
}n−m−1

]∣

∣

∣

∣

=: H41 + H42 + H43 + H44 + H45.(89)

It is obvious that

H41 = mn

∣

∣

∣

∣

EΘ

[

{

1 −G (um)Θ
}

(

{

G (um)Θ
}m−1 {

1 −G (un)Θ
}{

G (un)Θ
}n−m−1

−EΘ

{

G (um)
Θ
}m−1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

)]
∣

∣

∣

∣

.

Therefore, in view of the Schwarz inequality, we get

H41 ≤ mn

√

EΘ

{

1 −G (um)
Θ
}2

√

D2
Θ

[

{

G (um)
Θ
}m−1 {

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]

.
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Hence, we may write as follows

H41 ≤ mn

√

EΘ

{

1 −G (um)Θ
}2

√

EΘ

[

{

G (um)Θ
}m−1 {

1 −G (un)Θ
}{

G (un)Θ
}n−m−1

]2

.

Since G (um)
Θ ≤ G (un)

Θ
(as m < n, Θ > 0 and (un), G are nondecreasing), we

have
{

G (um)
Θ
}m−1 {

G (un)
Θ
}n−m−1

≤
{

G (un)
Θ
}m−1 {

G (un)
Θ
}n−m−1

=
{

G (un)
Θ
}n−2

. This, the fact that 0 ≤
{

G (um)
Θ
}m−1

≤ 1 and the last

relation for H41 imply

H41 ≤ mn

√

EΘ

{

1 −G (um)
Θ
}2

√

EΘ

[

{

1 −G (un)
Θ
}2 {

G (un)
Θ
}2(n−2)

]

.

Thus, we obtain

H41 ≪ mn

√

EΘ

{

1 −G (um)Θ
}

√

EΘ

{

1 −G (un)Θ
}

.

This, the relation in (80) and the fact that ε > 1 yield

H41 ≪ mn
1

m(1+ε)/2

1

n(1+ε)/2
=

m

m(1+ε)/2

n

n(1+ε)/2
≤ n

n(1+ε)/2
=

1

n(ε−1)/2

for some ε > 1.
Consequently, putting δ3 := (ε− 1) /2 again, we conclude

(90) H41 ≪ 1/nδ3 for some δ3 > 0.

In order to give the bound for the component H42 in (89), observe that, as

0 ≤
{

G (um)
Θ
}m−1

≤ 1, we get

H42 ≤ mnEΘ

{

1 −G (um)
Θ
}

EΘ

[

{

1 −G (un)
Θ
}

(

{

G (un)
Θ
}n−m−1

−
{

G (un)
Θ
}n
)]

.

This, the relations in (77) and (85), as well as the facts that: zn−m−1 − zn =
zn−(m+1) − zn < (m + 1) /n, if 0 ≤ z ≤ 1 and 1 ≤ m + 1 < n, and 0 ≤
G (un)

Θ ≤ 1, yield

(91) H42 ≪ mn
1

m1+ε

1

n1+ε

m + 1

n
≪ m

n
.

Our aim now is to find the estimate for the component H43 in (89). We have

H43 ≤ mnEΘ

{

1 −G (um)Θ
}

× EΘ

[

{

1 −G (un)
Θ
}{

G (un)
Θ
}n
∣

∣

∣

∣

{

G (um)
Θ
}m−1

− EΘ

{

G (um)
Θ
}m−1

∣

∣

∣

∣

]

.
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By (77) and the property that

∣

∣

∣

∣

{

G (um)
Θ
}m−1

− EΘ

{

G (um)
Θ
}m−1

∣

∣

∣

∣

≤ 2, we

obtain

H43 ≪ mn
1

m1+ε
EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

≤ nEΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

.

Furthermore, as 0 ≤
{

G (un)
Θ
}n

≤ 1 and (85) holds, we conclude

(92) H43 ≪ nEΘ

{

1 −G (un)
Θ
}

≪ n
1

n1+ε
=

1

nε
for some ε > 1.

We now wish to estimate the term H44 in (89). It is clear that

H44 ≤ mnEΘ

[

{

1 −G (um)
Θ
}

∣

∣

∣

∣

{

G (um)
Θ
}m−1

− EΘ

{

G (um)
Θ
}m−1

∣

∣

∣

∣

]

×EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n ]

.

Since, as has already been mentioned,

∣

∣

∣

∣

{

G (um)
Θ
}m−1

− EΘ

{

G (um)
Θ
}m−1

∣

∣

∣

∣

is bounded above by 2, we obtain

H44 ≪ mnEΘ

{

1 −G (um)
Θ
}

EΘ

[{

1 −G (un)
Θ
}{

G (un)
Θ
}n]

.

By the Schwarz inequality and the fact that 0 ≤
{

G (un)
Θ
}2n

≤ 1, we get

H44 ≪ mnEΘ

{

1 −G (um)
Θ
}

√

EΘ

{

1 −G (un)
Θ
}2
√

EΘ

{

G (un)
Θ
}2n

≤ mnEΘ

{

1 −G (um)
Θ
}

√

EΘ

{

1 −G (un)
Θ
}2

.

This, the fact that EΘ

{

1 −G (un)
Θ
}2

≤ EΘ

{

1 −G (un)
Θ
}

together with the

relations in (77) and (85) yield

H44 ≪ mn
1

m1+ε

1

n(1+ε)/2
≤ 1

n(ε−1)/2
for some ε > 1.

Hence, setting, as previously, δ3 := (ε− 1) /2, we obtain

(93) H44 ≪ 1/nδ3 for some δ3 > 0.

Therefore, in order to complete the estimation of H4, we only need to find the
bound for H45 in (89). We have

H45 ≤ mnEΘ

[

{

1 −G (um)Θ
}{

G (um)Θ
}m−1

]

× EΘ

[

{

1 −G (un)
Θ
}

(

{

G (un)
Θ
}n−m−1

−
{

G (un)
Θ
}n
)]

.



860 M. DUDZIŃSKI AND K. FURMAŃCZYK

Hence, due to the earlier cited property that zn−m−1 − zn < (m + 1) /n, pro-

vided 0 ≤ z ≤ 1 and 1 ≤ m+ 1 < n, and the facts that: 0 <
{

G (um)
Θ
}m−1

≤
1, 0 ≤ G (un)

Θ ≤ 1, we get

H45 < mnEΘ

{

1 −G (um)Θ
}

EΘ

{

1 −G (un)Θ
} m + 1

n

≪ mnEΘ

{

1 −G (um)
Θ
}

EΘ

{

1 −G (un)
Θ
} m

n

= m2EΘ

{

1 −G (um)
Θ
}

EΘ

{

1 −G (un)
Θ
}

.

This together with the relations in (77) and (85) imply

(94) H45 ≪ m2 1

m1+ε

1

n1+ε
<

1

(mn)
ε for some ε > 1.

It stems from (89) and (90)-(94) that

(95) H4 ≪ m/n + 1/nδ for some δ > 0.

Finally, combining (73), (74), (83), (88) and (95), we obtain that (70) is sat-
isfied. Since it is the result we wished to establish, the proof of Lemma 4.5 is
complete. �

The following assertion will also be needed for the proof of Theorem 2.1(ii).

Lemma 4.6. Under the assumptions of Theorem 2.1(ii) on {Xi}, Ψ, {un}, Θ
and G, we get

(96) lim
n→∞

P
(

M (2)
n ≤ un

)

= EΘ

{

e−Λ(Θ) (1 + Λ (Θ))
}

.

Proof. In view of formula (62) from the proof of Lemma 4.4 and the fact that

P
(

M
(2)
n ≤ un

)

= EΘP
(

M
(2)
n ≤ un

∣

∣

∣
Θ
)

, we immediately obtain

lim
n→∞

P
(

M (2)
n ≤ un

)

(97)

= lim
n→∞

(

EΘ

{

(G (un))
Θ
}n

+nEΘ

[

{

1 − (G (un))
Θ
}{

(G (un))
Θ
}n−1

])

.

In addition, since 0 ≤
{

(G (un))
Θ
}n

≤ 1, it follows from the Lebesgue theorem

on passing to the limit under the integral sign that

lim
n→∞

(

EΘ

{

(G (un))Θ
}n

+ nEΘ

[

{

1 − (G (un))Θ
}{

(G (un))Θ
}n−1

])

(98)

= EΘ

(

lim
n→∞

[{

(G (un))
Θ
}n]

+ lim
n→∞

[

n
{

1 − (G (un))
Θ
}{

(G (un))
Θ
}n−1

])

.

Furthermore, the fact that (G (un))
Θ → 1 as n → ∞, as well as a Poisson

approximation to the binomial distribution with npn = nP (X1 > un|Θ) =
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n
{

1 − (G (un))
Θ
}

and the property that, due to the assumption from (9),

n
{

1 − (G (un))
Θ
}

a.s.→ Λ (Θ), as n → ∞, yield

(99) lim
n→∞

{

(G (un))
Θ
}n−1

= lim
n→∞

{

(G (un))
Θ
}n

= e−Λ(Θ) a.s.

By virtue of (97)-(99), we have

lim
n→∞

P
(

M (2)
n ≤ un

)

= EΘ

{

e−Λ(Θ) + Λ (Θ) e−Λ(Θ)
}

= EΘ

{

e−Λ(Θ) (1 + Λ (Θ))
}

,

which is a desired claim in (96). �

5. Proofs of the ASCLTs for ordinary maxima and the second

largest maxima

We are now in a position to prove Theorems 2.1-2.2.

Proof of Theorems 2.1-2.2. First, we will show that the following property
holds true

(100) lim
N→∞

1

logN

N
∑

n=1

1

n
(I (Mn ≤ un) − P (Mn ≤ un)) = 0 a.s.

By virtue of Lemma 3.1 in Csaki and Gonchigdanzan [5], in order to prove
(100), it is enough to establish that

(101) V ar

(

N
∑

n=1

1

n
I (Mn ≤ un)

)

≪ (logN)
2

(log logN)1+ε for some ε > 0.

Put

(102) ξn := I (Mn ≤ un) .

Then,

V ar

(

N
∑

n=1

1

n
I (Mn ≤ un)

)

= V ar

(

N
∑

n=1

1

n
ξn

)

≤
N
∑

n=1

1

n2
V ar (ξn) + 2

∑

1≤m<n≤N

1

mn
|Cov (ξm, ξn)|

=:
∑

1
+
∑

2
.(103)

It is clear that

(104)
∑

1
≤

N
∑

n=1

1

n2
< ∞.
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Thus, it remains to estimate the second component
∑

2 in (104). It follows
from Lemmas 4.1-4.2 that, under the assumptions of Theorems 2.1(i) and 2.2,
respectively,

|Cov (ξm, ξn)| = |Cov (I (Mm ≤ um) , I (Mn ≤ un))|
≪ m/n + 1/nδ for some δ > 0.(105)

Consequently, we may write that

∑

2
≪

N−1
∑

m=1

N
∑

n=m+1

1

mn

m

n
+

N−1
∑

m=1

N
∑

n=m+1

1

mn

1

nδ

=:
∑

21
+
∑

22
.(106)

The estimation of the component
∑

21 in (106) is straightforward. We clearly
have

(107)
∑

21
≪

N−1
∑

m=1

N
∑

n=m+1

1

n2
≤

N−1
∑

m=1

1

m
≪ logN.

Furthermore, in order to give the bound for
∑

22 in (106), observe that

∑

22
≪

N−1
∑

m=1

N
∑

n=m+1

1

mn

1

nδ
=

N−1
∑

m=1

1

m

N
∑

n=m+1

1

nδ+1

≤ 1

δ

N−1
∑

m=1

1

m1+δ
for some δ > 0.

Consequently,

(108)
∑

22
≪

N−1
∑

m=1

1

m1+δ
< ∞.

In view of (106)-(108), we obtain

(109)
∑

2
≪ logN.

Due to (103), (104) and (109), we get

V ar

(

N
∑

n=1

1

n
I (Mn ≤ un)

)

≪ logN.

Thus, (101) is fulfilled and (100) holds true.
The convergence in (100), Lemma 4.3 and the regularity property of loga-

rithmic mean imply (10) and hence, the proofs of Theorems 2.1(i) and 2.2 are
complete.

Thus, we need to prove Theorem 2.1(ii). The approach leading to the proof
of Theorem 2.1(ii) is identical as the method applied in the proof of Theorems
2.1(i) and 2.2, with the only exception that Lemmas 4.4-4.6 are implied here
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instead of Lemmas 4.1-4.3. First, we will show that the following property is
satisfied

(110) lim
N→∞

1

logN

N
∑

n=1

1

n

(

I
(

M (2)
n ≤ un

)

− P
(

M (2)
n ≤ un

))

= 0 a.s.

In view of Lemma 3.1 from Csaki and Gonchigdanzan [5], in order to prove
(110), it suffices to show that

(111) V ar

(

N
∑

n=1

1

n
I
(

M (2)
n ≤ un

)

)

≪ (logN)
2

(log logN)
1+ε for some ε > 0.

Set

(112) ζn := I
(

M (2)
n ≤ un

)

.

Then,

V ar

(

N
∑

n=1

1

n
I
(

M (2)
n ≤ un

)

)

= V ar

(

N
∑

n=1

1

n
ζn

)

≤
N
∑

n=1

1

n2
V ar (ζn) + 2

∑

1≤m<n≤N

1

mn
|Cov (ζm, ζn)|

=:
∼
∑

1
+

∼
∑

2
.(113)

Obviously, we get

(114)

∼
∑

1
≤

N
∑

n=1

1

n2
< ∞.

Thus, it remains to estimate the second component
∼
∑

2 in (113). By virtue of
Lemmas 4.4-4.5, we have that, under the assumptions of Theorem 2.1(ii),

|Cov (ζm, ζn)| =
∣

∣

∣
Cov

(

I
(

M (2)
m ≤ um

)

, I
(

M (2)
n ≤ un

))∣

∣

∣

≪ m/n + 1/nδ for some δ > 0.(115)

Using (115) and reasoning as in the estimation of
∑

2 in the previous proof (see
the derivations in (106)-(109)), we immediately obtain

(116)

∼
∑

2
≪

N−1
∑

m=1

N
∑

n=m+1

1

mn

m

n
+

N−1
∑

m=1

N
∑

n=m+1

1

mn

1

nδ
≪ logN.

In view of (113), (114) and (116), we get

V ar

(

N
∑

n=1

1

n
I
(

M (2)
n ≤ un

)

)

≪ logN.

Thus, (111) is fulfilled and (110) holds true.



864 M. DUDZIŃSKI AND K. FURMAŃCZYK

Finally, the convergence in (110), Lemma 4.6 and the regularity property of
logarithmic mean imply (12), and, as a consequence, the proof of Theorem 2.1
(ii) is complete. �

Furthermore, we also prove the validity of Corollaries 2.1-2.2 in this part
of our paper. As has already been mentioned, both of these claims are the
straightforward consequences of (the previously proved) Theorems 2.1 and 2.2,
as well as the results stated by Wüthrich [28].

Proof of Corollary 2.1(i). By Assumption 5.1 and Corollary 5.2 in Wüthrich
[28] (see Example 5.3 for the case of the Clayton copula there), we have

(117) lim
n→∞

P (Mn ≤ 1 − x/n) = (1 + αx)
−1/α

.

Put un := 1 − xn/n, where xn ∼ 1/nε for some ε > 0. Thus, by virtue of the
relation in (117),
(118)

lim
n→∞

P (Mn ≤ un) = lim
n→∞

P (Mn ≤ 1 − xn/n) = lim
n→∞

(1 + αxn)
−1/α

= 1.

Since F is a cdf of the U (0, 1) distribution, we immediately get

n (1 − F (un)) = n · xn/n = xn ∼ 1/nε for some ε > 0,

and assumption (7) is satisfied. Therefore, relation (118) and Theorem 2.1
imply the a.s. convergence in (14). �

Proof of Corollary 2.1(ii). Put un := 1 − xn/n, where xn ∼ nε for some ε ∈
(1 − 1/ (1 + α) ; 1). Hence, in view of (117),

(119) lim
n→∞

P (Mn ≤ un)= lim
n→∞

P (Mn ≤ 1 − xn/n)= lim
n→∞

(1 + αxn)
−1/α

=0.

Since F is a cdf of the U (0, 1) distribution, we instantly obtain

n (1 − F (un)) = n · xn/n = xn ∼ nε for some ε ∈ (1 − 1/ (1 + α) ; 1) ,

and assumption (8) is fulfilled. Therefore, relation (119) and Theorem 2.1
imply the a.s. convergence in (15). �

Proof of Corollary 2.2. By Assumption 5.1 and Corollary 5.2 in Wüthrich [28]
(see Example 5.3 for the case of the Gumbel copula there), we have

(120) lim
n→∞

P
(

Mn ≤ 1 − x/n1/α
)

= exp (−x) .

Put un := 1 − xn/n
1/α, where xn ∼ nγ for some γ ∈ (0; 1/α). Therefore, by

(120),

(121) lim
n→∞

P (Mn ≤ un)= lim
n→∞

P
(

Mn ≤ 1 − xn/n
1/α
)

= lim
n→∞

exp (−xn)=0.

Since F is a cdf of the U (0, 1) distribution and 0 < γ < 1/α, we immediately
get

n (1 − F (un)) = n · xn/n
1/α = n1−1/αxn
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∼ n1−1/α+γ ∼ nε for some ε ∈ (1 − 1/α; 1) .

and condition (13) is satisfied. Consequently, a desired result in (11) directly
follows from derivation (121) and Theorem 2.2. �

6. Proofs of the ASCLTs for the kth largest maxima

In this part of our work, we shall give the proofs of Theorem 3.1 and Corol-
lary 3.1.

Proof of Theorem 3.1. Suppose that n −m > k − 1. Let us estimate the ex-
pressions J and K defined as follows:

(122) J :=
k−1
∑

s=0

(

n

s

)

EΘ

[

{

1−G(un)Θ
}s
(

{

G(un)Θ
}n−m−s−

{

G(un)Θ
}n−s

)]

,

(123) K := K1 + K2 + K3 + K4,

where:

K1 := EΘ

[

{

G (um)Θ
}m {

G (un)Θ
}n−m

]

− EΘ

[{

G (um)Θ
}m]

EΘ

[

{

G (un)Θ
}n−m

]

,

K2 := nEΘ

[

{

G (um)
Θ
}m {

1 −G (un)
Θ
}{

G (un)
Θ
}n−m−1

]

,

K3 := mEΘ

[

{

G (um)Θ
}m {

1 −G (um)Θ
}{

G (un)Θ
}n−m

]

,

K4 :=

k−1
∑

s1=1

k−1
∑

s2=1

ms1ns2EΘ

[{

1 −G (um)
Θ
}s1 {

1 −G (un)
Θ
}s2]

.

In order to find the bound for J , we shall use the property that zn−s−m−zn−s <
m/ (n− s), if 1 ≤ m < n − s and 0 ≤ z ≤ 1. Thus, we have that for any
s ∈ {0, 1, . . . , k − 1}

{

G(un)Θ
}n−m−s −

{

G(un)Θ
}n−s

<
m

n− s
≤ m

n− k + 1
.

Hence, we may write that

(124) J <
m

n− k + 1

k−1
∑

s=0

nsEΘ

[

{

1 −G(un)Θ
}s
]

.

Our purpose now is to estimate the sum
∑k−1

s=0 n
sEΘ

[{

1 −G(un)Θ
}s]

. It fol-
lows from assumption (17) that:

(125) µt := max
0≤s≤t

EΘΘs < ∞ for any t ≤ 2 (k − 1) .

In view of (4), (6), (125) and the well-known fact that 1−e−x ≤ x for all x ∈ R,
we get for any s ∈ {0, 1, . . . , k − 1}

EΘ

{

1 −GΘ(un)
}s

= EΘ {1 − exp (−ΘΨ (F (un)))}s
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≤ EΘ {ΘΨ (F (un))}s = {Ψ (F (un))}s EΘΘs

≤ {Ψ (F (un))}s µk−1.(126)

Furthermore, by assumption (18) and the facts that F is nondecreasing and
Ψ−1 is decreasing, we obtain

Ψ (F (un)) ≤ C/nβ for some generic constants C > 0 and β > 1,

and consequently,

(127) nΨ (F (un)) ≪ 1/nγ for some γ > 0.

Since C/nγ → 0, as n → ∞, the relation in (127) implies that

(128) nΨ (F (un)) ≤ q < 1 for all sufficiently large n.

By virtue of (126) and (128), we have

k−1
∑

s=0

nsEΘ

[

{

1 −G(un)Θ
}s
]

= 1 +

k−1
∑

s=1

nsEΘ

[

{

1 −G(un)Θ
}s
]

≤ 1 + µk−1

k−1
∑

s=1

ns {Ψ (F (un))}s ≪ 1 + µk−1
nΨ (F (un))

1 − nΨ (F (un))

≤ 1 + µk−1
q

1 − q
≪ 1,(129)

where the penultimate relation follows from the fact that the function y =
x/ (1 − x) is an increasing one.

Due to (124) and (129), we obtain

(130) J ≪ m

n− k + 1
.

Our task now is to estimate K in (123). In order to find the bound for
component K1 in (123), let us notice that K1 is defined identically as component
B in (31). Thus, we may write that

(131) K1 ≤ B1 + B2 + B3,

where B1-B3 are defined in the same manner as the terms B1-B3 in (32), with
an exception that the conditions of Theorem 3.1 are satisfied in the current
case. Thus, it follows from (33) that

(132) B1 + B3 < 2 (m/n) .

Furthermore, by (34)-(37), we get
(133)

B2 ≤
√

∣

∣Ψ−1 (2nΨ (F (un))) − Ψ−1 (nΨ (F (un)))
∣

∣Ψ−1 (nΨ (F (un)))
+
∣

∣Ψ−1 (nΨ (F (un))) − Ψ−1 (0)
∣

∣Ψ−1 (2nΨ (F (un)))
.

Observe also that Ψ−1 is a Lipschitz function, as, in view of the mean value
theorem, we have

∣

∣Ψ−1 (x) − Ψ−1 (y)
∣

∣ = |EΘ exp(−xΘ) − EΘ exp(−yΘ)|(134)
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≤ |x− y|EΘΘ ≤ L |x− y| for some constant L > 0 and any x, y > 0.

Combining (134) with (133), we obtain

(135) B2 ≤
√

2nΨ (F (un)).

Consequently, in view of (135) and (127), we get

(136) B2 ≪ 1/nγ/2 for some γ > 0.

Thus, due to (131), (132) and (136),

(137) K1 ≪ m/n + 1/nγ/2 for some γ > 0.

In order to estimate K2 in (123), let us notice that

(138) K2 ≤ nEΘ

[

1 −G (un)
Θ
]

.

Assumptions (17)-(18) (and relation (127), in particular) together with deriva-
tion (126) and relation (138) imply

(139) K2 ≤ nEΘ

[

1 −G (un)
Θ
]

≤ nΨ (F (un))µ1 ≪ 1/nγ for some γ > 0.

Using identical reasoning as in the estimation of component K2, we have the
following estimate for K3 in (123)

(140) K3 ≤ mEΘ

[

1−G (um)
Θ
]

≤ mΨ (F (um))µ1 ≪ 1/mγ for some γ > 0.

Thus, in order to complete the estimation of K in (123), we only need to give
the bound for component K4 in (123). It follows from the Schwarz inequality
that

K4 ≤
k−1
∑

s1=1

k−1
∑

s2=1

ms1ns2

√

EΘ

[

{

1 −G (um)
Θ
}2s1

]

√

EΘ

[

{

1 −G (un)
Θ
}2s2

]

=
k−1
∑

s1=1

ms1

√

EΘ

[

{

1 −G (um)
Θ
}2s1

] k−1
∑

s2=1

ns2

√

EΘ

[

{

1 −G (un)
Θ
}2s2

]

.(141)

Applying derivation (126) and assumption (17), we immediately obtain that,
for s2 ∈ {1, 2, . . . , k − 1},

EΘ

[

{

1 −G (un)
Θ
}2s2

]

≤ (Ψ (F (un)))
2s2 µ2s2 ≤ (Ψ (F (un)))

2s2 µ2(k−1),

where, in view of definition (125), µ2(k−1) := max
0≤s≤2(k−1)

EΘΘs < ∞.

Therefore,
√

EΘ

[

{

1 −G (un)
Θ
}2s2

]

≤ (Ψ (F (un)))
s2 √µ2(k−1).
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Thus, reasoning similarly as in the estimation of
∑k−1

s=1 n
sEΘ

[{

1 −G(un)Θ
}s]

in (129), we get

k−1
∑

s2=1

ns2

√

EΘ

[

{

1 −G (un)
Θ
}2s2

]

≤ √
µ2(k−1)

k−1
∑

s2=1

ns2 {Ψ (F (un))}s2

≤ √
µ2(k−1)

nΨ (F (un))

1 − nΨ (F (un))
.

This, (127), (125) and the fact that y = x/ (1 − x) is an increasing function
yield

k−1
∑

s2=1

ns2

√

EΘ

[

{

1 −G (un)
Θ
}2s2

]

≪ √
µ2(k−1)

1/nγ

1 − 1/nγ
for some γ > 0,

and hence,

(142)

k−1
∑

s2=1

ns2

√

EΘ

[

{

1 −G (un)
Θ
}2s2

]

≪ 1/nγ for some γ > 0.

Analogously, the following relation holds true

(143)
k−1
∑

s1=1

ms1

√

EΘ

[

{

1 −G (um)Θ
}2s1

]

≪ 1/mγ for some γ > 0.

By virtue of (141)-(143), we have

(144) K4 ≪ 1/ (mn)
γ

for some γ > 0.

In view of (123), (137), (139), (140) and (144), we get

(145) K ≪ m/n + 1/mδ for some δ > 0.

It follows from (130) and (145) that

(146) J + K ≪ m

n− k + 1
+

1

mδ
for some δ > 0.

Continuing our proof, observe that
∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
n ≤ un

))∣

∣

∣

≪ E
∣

∣

∣
I
(

M (k)
n ≤ un

)

− I
(

M (k)
m,n ≤ un

)∣

∣

∣

+
∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
m,n ≤ un

))
∣

∣

∣

=
{

P
(

M (k)
m,n ≤ un

)

− P
(

M (k)
n ≤ un

)}

+
∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
m,n ≤ un

))∣

∣

∣
.(147)

On the other hand, using the assumptions in (5)-(6), it is easy to check that:

P
(

M (k)
m,n ≤ un

)

= EΘP
(

M (k)
m,n ≤ un

∣

∣

∣
Θ
)



ON SOME APPLICATIONS OF THE ARCHIMEDEAN COPULAS 869

=

k−1
∑

s=0

(

n−m

s

)

EΘ

[

{

1 −G(un)Θ
}s {

G(un)Θ
}n−m−s

]

,

P
(

M (k)
n ≤ un

)

= EΘP
(

M (k)
n ≤ un

∣

∣

∣
Θ
)

=

k−1
∑

s=0

(

n

s

)

EΘ

[

{

1 −G(un)Θ
}s {

G(un)Θ
}n−s

]

,

and consequently that

(148) P
(

M (k)
m,n ≤ un

)

− P
(

M (k)
n ≤ un

)

≤ J,

where J is such as in (122).
In addition, it is clear that

∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
m,n ≤ un

))∣

∣

∣

=

k−1
∑

s1=0

k−1
∑

s2=0

(

m

s1

)(

n−m

s2

)

D (s1, s2,m, n) ,

where D (s1, s2,m, n) is such as in (72).
This implies that

∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
m,n ≤ un

))
∣

∣

∣

≤ K := K1 + K2 + K3 + K4,(149)

where K and K1-K4 are defined as in (123).
The relations in (147)-(149) and (146) yield

∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
n ≤ un

))∣

∣

∣

≤ J + K

≪ m

n− k + 1
+

1

mδ
for some δ > 0.(150)

Next, let us find the limit lim
n→∞

P
(

M
(k)
n ≤ un

)

. Using the same ideas and theo-

retical background as in the proofs of Lemmas 4.3 and 4.6 (in particular, a Pois-
son approximation to the binomial distribution with npn = nP (X1 > un|Θ) =

n
{

1 − (G (un))
Θ
}

a.s.→ Λ (Θ), as n → ∞), we have

lim
n→∞

P
(

M (k)
n ≤ un

)

= lim
n→∞

EΘP
(

M (k)
n ≤ un

∣

∣

∣
Θ
)

= EΘ

{

lim
n→∞

k−1
∑

s=0

(

n

s

)

EΘ

[

{

1 −G(un)Θ
}s {

G(un)Θ
}n−s

]

}

= EΘ

{

lim
n→∞

k−1
∑

s=0

ns

s!

{

1 −G(un)Θ
}s {

G(un)Θ
}n−s

}
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= EΘ







lim
n→∞

k−1
∑

s=0

(

n
{

1 − (G (un))
Θ
})s

s!
e−Λ(Θ)







= e−Λ(Θ)
k−1
∑

s=0

(Λ (Θ))
s

s!
.(151)

The derivations in (150)-(151) will be applied in the final stage of our proof.
Following Lemma 3.1 in Csaki and Gonchigdanzan [5], in order to complete

the proof of Theorem 3.1, it is sufficient to show that

(152) V ar

(

N
∑

n=k

1

n
I
(

M (k)
n ≤ un

)

)

≪ (logN)2

(log logN)
1+ε for some ε > 0.

Clearly,

V ar

(

N
∑

n=k

1

n
I
(

M (k)
n ≤ un

)

)

≤
N
∑

n=k

1

n2
V ar

(

I
(

M (k)
n ≤ un

))

+ 2
∑

k≤m<n≤N

1

mn

∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
n ≤ un

))
∣

∣

∣

≤
N
∑

n=k

1

n2
+ 2

∑

k≤m<n≤N

1

mn

∣

∣

∣
Cov

(

I
(

M (k)
m ≤ um

)

, I
(

M (k)
n ≤ un

))
∣

∣

∣
.

This and (150) imply

V ar

(

N
∑

n=1

1

n
I
(

M (k)
n ≤ un

)

)

≪
N
∑

n=1

1

n2
+

∑

k≤m<n≤N

1

mn

m

n− k + 1
+

∑

k≤m<n≤N

1

mn

1

mδ
for some δ > 0.

Therefore, we may write that

V ar

(

N
∑

n=1

1

n
I
(

M (k)
n ≤ un

)

)

≪
N
∑

n=1

1

n2
+

N−1
∑

m=1

N
∑

n=m+1

1

mn

m

n
+

N−1
∑

m=1

1

m1+δ

N
∑

n=1

1

n

=

N
∑

n=1

1

n2
+

N−1
∑

m=1

N
∑

n=m+1

1

n2
+

N−1
∑

m=1

1

m1+δ

N
∑

n=1

1

n
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≤
N
∑

n=1

1

n2
+

N−1
∑

m=1

1

m
+

N−1
∑

m=1

1

m1+δ

N
∑

n=1

1

n
,

and hence,

V ar

(

N
∑

n=1

1

n
I
(

M (k)
n ≤ un

)

)

≪ logN.

Consequently, condition (152) is satisfied. This, Lemma 3.1 in Csaki and
Gonchigdanzan [5] together with derivation (151) and the property of loga-
rithmic average yield a desired claim in (19). �

We only need to prove our latest statement.

Proof of Corollary 3.1. First, let us notice that, as Ψ (t) = (− ln t)
α

for some
α > 1 and (20) holds, we have

nΨ (F (un)) = 2n (− lnF (un))
α ∼ 2n

(

− ln
(

1 − τ

n

))α

= 2n
1

nα

(

−n ln
(

1 − τ

n

))α

∼ 2n1−α
(

− ln
(

1 − τ

n

)n)α

∼ 2n1−α (− ln exp (−τ))
α ∼ 2n1−α (τ)

α

≪ 1/nα−1 for some α > 1.

Consequently:
Ψ (F (un)) ≪ 1/nα for some α > 1,

and, as F in nondecreasing and Ψ−1 is decreasing,

un ≥ F−1
(

Ψ−1 (1/nα)
)

for all sufficiently large n and some α > 1.

Therefore, condition (18) of Theorem 3.1 is fulfilled with β = α.
Thus, in view of Theorem 3.1, we obtain (see (19))

(153) lim
N→∞

1

logN

N
∑

n=1

1

n
I
(

M (k)
n ≤ un

)

= EΘ

{

e−Λ(Θ)
k−1
∑

s=0

(Λ (Θ))s

s!

}

a.s.,

where Λ (Θ) is such as in (9), i.e.,

lim
n→∞

n
{

1 − (G (un))
Θ
}

= Λ (Θ) a.s.

The assumptions imposed in (6), (4) and (20) together with previously recol-
lected condition (9) imply

EΘ (Λ (Θ)) = lim
n→∞

EΘ

[

n
{

1 − (G (un))Θ
}]

= lim
n→∞

[

n
{

1 − EΘ (G (un))
Θ
}]

= lim
n→∞

n
[

1 − (Ψ)
−1

(Ψ (F (un)))
]

= lim
n→∞

n (1 − F (un)) = τ.(154)

Finally, due to (153)-(154), we conclude that (19) holds, which is the result we
wished to prove. �



872 M. DUDZIŃSKI AND K. FURMAŃCZYK

7. Appendix

In this part of our paper, some comments on the conditions assumed in
Theorems 2.1-2.2 are placed. We shall focus on the assumptions concerning
the convergence of the sequence n (1 − F (un)), i.e., the conditions

(155) n (1 − F (un)) ∼ 1/nε or n (1 − F (un)) ∼ nε for some ε > 0.

Obviously, a natural question arises: why the assumptions of the form

(156) n (1 − F (un)) → τ , where τ stands for some non-negative constant,

have not been considered in the statements of the mentioned propositions?
The reason for the omission of the conditions as in (156) is that under the
assumptions of this sort, the key estimation leading to the proofs of Lemmas 4.1,
4.2 and 4.5 (and consequently, to the proofs of Theorems 2.1-2.2, respectively),
i.e., the inequality

(157) 2nΨ (F (un)) > Ψ (1 − F (un)) for all sufficiently large n,

(see the relations between (44) and (45) and between (51) and (52)) is not
satisfied.

It may be checked that the inequality in (157) is fulfilled for some class
of the Clayton copulas, namely for the copulas with a generator of the form
Ψ (t) = 1

α (t−α − 1) under the restriction that α is some negative number from
the interval (−1; 0). On the other side, it follows from [17]-[18] that Ψ (t) =
1
α (t−α − 1) generates the Archimedean copula in dimension d if and only if
α ≥ −1/ (d− 1). Since we consider the copulas of dimension n, where n → ∞,
we have that the Clayton copula is the Archimedean one if and only if α ≥
−1/ (n− 1) → 0, as n → ∞, which contradicts the condition that α ∈ (−1; 0).

It turns out that assumption (156) may be considered in the proof of the
ASCLT for the k-th largest maxima, if we additionally assume that conditions
(17) and (18) of Theorem 3.1 hold true. It is shown in the proof of Corollary
3.1 that (18) is satisfied for some class of the Gumbel copulas, namely for the
copulas with a generator of the form Ψ (t) = (− ln t)α under the constraint that
α > 1.

It is not difficult to prove that assumption (17) may be replaced by condition
(21), as we stated in Remark 3.1. In order to justify this fact, let us first notice
that the n-th derivative of the inverse function Ψ−1 may be expressed as follows

(

Ψ−1 (v)
)(n)

= (−1)
n
E {Θn exp (−Θv)} ,

since Ψ−1 (v) = E {exp (−Θv)}.
Hence, we immediately get

E (Θn) = (−1)
n (

Ψ−1 (v)
)(n)

∣

∣

∣

v=0
.

Therefore, the condition in (21), i.e., the constraint

(−1)
n (

Ψ−1 (v)
)(2(k−1))

∣

∣

∣

v=0
< ∞,
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implies the property that E
(

Θ2(k−1)
)

< ∞, which is the mentioned assumption
in (17).
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ward and forward, In: Rüschendorf, L., Schweizer, B., Taylor, M.D. (Eds.), Distributions
with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Hayward,
CA, pp. 1–14, 1996.

[26] U. Stadtmüller, Almost sure versions of distributional limit theorems for certain order

statistics, Statist. Probab. Lett. 58 (2002), no. 4, 413–426.
[27] Z. Tan, Almost sure central limit theorem for exceedance point processes of stationary

sequences, Braz. J. Probab. Statist. 29 (2015), no. 3, 717–731.
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