DOI QR코드

DOI QR Code

가시오갈피 물 추출물이 간세포에서 포도당 이용 대사에 미치는 영향

Effects of Acanthopanax senticosus Water Extract on Glucose-Regulating Mechanisms in HepG2 Cells

  • 김대중 (강원대학교 웰빙특산물산업화지역혁신센터) ;
  • 강윤환 (한약진흥재단) ;
  • 김경곤 (강원대학교 생명건강공학과) ;
  • 김태우 (강원대학교 웰빙특산물산업화지역혁신센터) ;
  • 박재봉 (한림대학교 의과대학 생화학교실) ;
  • 최면 (강원대학교 웰빙특산물산업화지역혁신센터)
  • Kim, Dae-Jung (Well-being Bioproducts RIC, Kangwon National University) ;
  • Kang, Yun Hwan (National Development Institute of Korean Medicine) ;
  • Kim, Kyoung Kon (Department of Bio-Health Technology, Kangwon National University) ;
  • Kim, Tae Woo (Well-being Bioproducts RIC, Kangwon National University) ;
  • Park, Jae Bong (Department of Biochemistry, Hallym University College of Medicine) ;
  • Choe, Myeon (Well-being Bioproducts RIC, Kangwon National University)
  • 투고 : 2016.12.14
  • 심사 : 2017.04.17
  • 발행 : 2017.05.31

초록

본 연구에서는 가시오갈피 물 추출물(ASW)를 이용하여 아직 시도된 바가 없는 HepG2 세포 내 포도당 유입과정 및 glucokinase(GK) 활성을 통한 포도당 이용대사 실험을 수행하였다. 포도당의 세포 내 유입은 GLUT2의 transcription factor들 중 하나인 $HNF-1{\alpha}$의 활성화로 GLUT2의 유전자 발현이 증가하여 이루어지는 것을 확인하였다. GK 활성 측정 결과 ASW가 GK를 활성화하여 포도당의 인산화에 영향을 주는 것을 확인하였고 AMP-activated protein kinase의 인산화 증가로 glycolysis에 관여하는 효소인 GK의 단백질 발현은 증가하고, gluconeogenesis에 관여하는 phosphoenolpyruvate carboxykinase의 단백질 발현은 감소하는 것을 확인하였다. 그리고 인산화된 포도당이 glycogen으로 전환 저장되는 메커니즘을 pPI3k-pAkt-pGSK-$3{\beta}$의 단계별 단백질 발현을 확인함으로써 검증하였으며, glycogen 함량 측정을 통해 확인하였다. 본 연구를 통해 ASW가 다양한 메커니즘에 작용하여 당뇨의 예방 및 개선에 활용할 수 있는 잠재적 소재임을 확인하였고, 이는 ASW가 천연 기능성 소재로서의 개발가치가 높음을 시사한다.

This study aimed to investigate glucose uptake mechanisms and metabolic mechanisms for absorbed glucose in HepG2 cells treated with Acanthopanax senticosus water extract (ASW). A colorimetric assay kit was used to measure polyphenol content, glucokinase (GK) activity, glucose uptake, glucose consumption in cell culture medium, and glycogen content. RT-PCR and western blotting were performed to examine changes in the expression levels of glucose transporter 2 (GLUT2), hepatocyte nuclear factor $1{\alpha}$ ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phospho-AMP-activated protein kinase (AMPK), phosphoenolpyruvate carboxykinase, GK, and glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$). Increased glucose uptake upon ASW treatment was confirmed to result from increased expression of $HNF-1{\alpha}$, which is one of the transcription factors acting on the GLUT2 promoter. From the measurements of GK activity, we observed that ASW had an effect on glucose phosphorylation, and we also confirmed that increased AMPK phosphorylation promoted glycolysis and suppressed gluconeogenesis. We confirmed that the increase in glycogen upon ASW treatment was induced by activation of Akt by PI3k, followed by phosphorylation of $GSK3{\beta}$. This study demonstrates that ASW activates glucose metabolic mechanisms in liver cells and is therefore a potential candidate to alleviate diabetes.

키워드

참고문헌

  1. Rotshteyn Y, Zito SW. 2004. Application of modified in vitro screening procedure for identifying herbals possessing sulfonylurea-like activity. J Ethnopharmacol 93: 337-344. https://doi.org/10.1016/j.jep.2004.04.007
  2. Whiting DR, Guariguata L, Weil C, Shaw J. 2011. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94: 311-321. https://doi.org/10.1016/j.diabres.2011.10.029
  3. Nepom GT. 1990. A unified hypothesis for the complex genetics of HLA associations with IDDM. Diabetes 39: 1153-1157.
  4. Koivisto VA. 1993. Insulin therapy in type II diabetes. Diabetes Care 16: 29-39. https://doi.org/10.2337/diacare.16.3.29
  5. Rayfield EJ, Ishimura K. 1987. Environmental factors and insulin-dependent diabetes mellitus. Diabetes Metab Rev 3: 925-957. https://doi.org/10.1002/dmr.5610030406
  6. Lee SH, Lee JK, Kim IH. 2012. Trends and perspectives in the development of antidiabetic drugs for type 2 diabetes mellitus. Korean J Microbiol Biotechnol 40: 180-185. https://doi.org/10.4014/kjmb.1205.05012
  7. Salimifar M, Fatehi-Hassanabad Z, Fatehi M. 2013. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr Diabetes Rev 9: 402-411. https://doi.org/10.2174/15733998113099990076
  8. Lee WT. 1979. Distribution of Acanthopanax plants in Korea. Korean J Pharmacogn 10: 103-107.
  9. Jung CH, Jung H, Shin YC, Park JH, Jun CY, Kim HM, Yim HS, Shin MG, Bae HS, Kim SH, Ko SG. 2007. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage. J Ethnopharmacol 113: 183-187. https://doi.org/10.1016/j.jep.2007.05.023
  10. Lin CC, Huang PC. 2000. Antioxidant and hepatoprotective effects of Acathopanax senticosus. Phytother Res 14: 489-494. https://doi.org/10.1002/1099-1573(200011)14:7<489::AID-PTR656>3.0.CO;2-G
  11. Sung MS, Jung HY, Choi JH, Lee SC, Choi BH, Park SS. 2014. Preparation of functional healthy drinks by Acanthopanax senticosus extracts. J Life Sci 24: 959-966. https://doi.org/10.5352/JLS.2014.24.9.959
  12. Hibasami H, Fujikawa T, Takeda H, Nishibe S, Satoh T, Fujisawa T, Nakashima K. 2000. Induction of apoptosis by Acanthopanax senticosus HARMS and its component, sesamin in human stomach cancer KATO III cells. Oncol Rep 7: 1213-1216.
  13. Tang W, Eisenbrand G. 1992. Chinese drugs of plant origin. Springer-Verlag, Berlin, Germany. p 1-12.
  14. Brekhman II, Dardymov IV. 1969. Pharmacological investigation of glycosides from ginseng and Eleutherococcus. Lloydia 32: 46-51.
  15. Kwon HO, Lee M, Kim YJ, Kim E, Kim OK. 2016. Beneficial effects of Acanthopanax senticosus extract in type II diabetes animal model via down-regulation of advanced glycated hemoglobin and glycosylation end products. J Korean Soc Food Sci Nutr 45: 929-937. https://doi.org/10.3746/jkfn.2016.45.7.929
  16. Lim SH, Park YH, Kwon CJ, Ham HJ, Jeong HN, Kim KH, Ahn YS. 2010. Anti-diabetic and hypoglycemic effect of Eleutherococcus spp.. J Korean Soc Food Sci Nutr 39: 1761-1768. https://doi.org/10.3746/jkfn.2010.39.12.1761
  17. Choung ES, Bak JP, Choi H, Jang GS, Kang SH, Kang SC, Zee OP. 2008. Effects of antidiabetic and GLUT4 gene expression of Acanthopanax senticosus extracts. Korean J Pharmacogn 39: 228-232.
  18. Kim DJ, Kim JM, Kim TH, Baek JM, Kim HS, Choe M. 2010. Effects of mixed extract from Lycium chinense, Cordyceps militaris, and Acanthopanax senticosus on glucose-regulating enzymes of HepG2 in hyperglycemic conditions. J Korean Soc Food Sci Nutr 39: 1257-1262. https://doi.org/10.3746/jkfn.2010.39.9.1257
  19. Ercan P, El SN. 2016. Inhibitory effects of chickpea and Tribulus terrestris on lipase, ${\alpha}$-amylase and ${\alpha}$-glucosidase. Food Chem 205: 163-169. https://doi.org/10.1016/j.foodchem.2016.03.012
  20. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. 2012. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr 3: 286-294. https://doi.org/10.3945/an.112.002089
  21. Mueckler M, Thorens B. 2013. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34: 121-138. https://doi.org/10.1016/j.mam.2012.07.001
  22. Sundaram R, Naresh R, Shanthi P, Sachdanandam P. 2013. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. Phytomedicine 20: 577-584. https://doi.org/10.1016/j.phymed.2013.01.006
  23. Saltiel AR, Kahn CR. 2001. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 4145: 799-806.
  24. Yan F, Dai G, Zheng X. 2016. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 36: 68-80. https://doi.org/10.1016/j.jnutbio.2016.07.004
  25. Cordero-Herrera I, Martin MA, Goya L, Ramos S. 2014. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem Toxicol 64: 10-19. https://doi.org/10.1016/j.fct.2013.11.014
  26. Kang YH, Kim DJ, Kim KK, Lee SM, Choe M. 2014. Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells. J Nutr Health 47: 167-175. https://doi.org/10.4163/jnh.2014.47.3.167
  27. Urquiaga I, Leighton F. 2000. Plant polyphenol antioxidants and oxidative stress. Biol Res 33: 55-64.
  28. Babu PVA, Liu D, Gilbert ER. 2013. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24: 1777-1789. https://doi.org/10.1016/j.jnutbio.2013.06.003
  29. Kim EJ, Choi JY, Yu M, Kim MY, Lee S, Lee BH. 2012. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J Food Sci Technol 44: 337-342. https://doi.org/10.9721/KJFST.2012.44.3.337
  30. Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B. 1990. The high $K_m$ glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 265: 6548-6551.
  31. David-Silva A, Freitas HS, Okamoto MM, Sabino-Silva R, Schaan BD, Machado UF. 2013. Hepatocyte nuclear factors $1{\alpha}/4{\alpha}$ and forkhead box A2 regulate the solute carrier 2A2 (Slc2a2) gene expression in the liver and kidney of diabetic rats. Life Sci 93: 805-813. https://doi.org/10.1016/j.lfs.2013.10.011
  32. Parrizas M, Maestro MA, Boj SF, Paniagua A, Casamitjana R, Gomis R, Rivera F, Ferrer J. 2001. Hepatic nuclear factor 1-${\alpha}$ directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol 21: 3234-3243. https://doi.org/10.1128/MCB.21.9.3234-3243.2001
  33. Matsui C, Shoji I, Kaneda S, Sianipar IR, Deng L, Hotta H. 2012. Hepatitis C virus infection suppresses GLUT2 gene expression via downregulation of hepatocyte nuclear factor $1{\alpha}$. J Virol 86: 12903-12911. https://doi.org/10.1128/JVI.01418-12
  34. Oosterveer MH, Schoonjans K. 2014. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 71: 1453-1467. https://doi.org/10.1007/s00018-013-1505-z
  35. Ferre T, Pujol A, Riu E, Bosch F, Valera A. 1996. Correction of diabetic alterations by glucokinase. Proc Natl Aacd Sci 93: 7225-7230. https://doi.org/10.1073/pnas.93.14.7225
  36. Hao J, Chen C, Huang K, Huang J, Li J, Liu P, Huang H. 2014. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway. Eur J pharmacol 745: 152-165. https://doi.org/10.1016/j.ejphar.2014.09.047
  37. Corton JM, Gillespie JG, Hardie DG. 1994. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4: 315-324. https://doi.org/10.1016/S0960-9822(00)00070-1
  38. Winder WW, Thomson DM. 2007. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47: 332-347. https://doi.org/10.1007/s12013-007-0008-7
  39. Hardie DG. 2003. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179-5183. https://doi.org/10.1210/en.2003-0982
  40. Carling D. 2004. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci 29: 18-24. https://doi.org/10.1016/j.tibs.2003.11.005
  41. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Lyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E. 2006. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3: 403-416. https://doi.org/10.1016/j.cmet.2006.05.005
  42. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. 1996. Characterization of the AMPactivated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271: 27879-27887. https://doi.org/10.1074/jbc.271.44.27879
  43. Zhang BB, Zhou G, Li C. 2009. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9: 407-416. https://doi.org/10.1016/j.cmet.2009.03.012
  44. Lee ES, Uhm KO, Lee YM, Han MS, Lee MS, Park JM, Suh PG, Park SH, Kim HS. 2007. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem Biophys Res Commun 361: 854-858. https://doi.org/10.1016/j.bbrc.2007.07.068
  45. Lin CL, Lin JK. 2008. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human HepG2 hematoma cells. Mol Nutr Food Res 52: 930-939. https://doi.org/10.1002/mnfr.200700437
  46. Ha DT, Trung TN, Hien TT, Dao TT, Yim N, Ngoc TM, Oh WK, Bae KH. 2010. Selected compounds derived from Moutan Cortex stimulated glucose uptake and glycogen synthesis via AMPK activation in human HepG2 cells. J Ethnopharmacol 131: 417-424. https://doi.org/10.1016/j.jep.2010.07.010
  47. Brunet A, Datta SR, Greenberg ME. 2001. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11: 297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
  48. Ko SK, Kim JS, Choi YE, Lee SJ, Park KS, Chung SH. 2002. Anti-diabetic effects of mixed water extract from ginseng radix rubra, acanthopanacis cortex, and cordyceps. Korean J Pharmacogn 33: 337-342.
  49. Whiteman EL, Cho H, Birnbaum MJ. 2002. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 13: 444-451. https://doi.org/10.1016/S1043-2760(02)00662-8
  50. Lee KJ, Kang JH, Row KH. 2001. Extraction and purification of acanthoside-D from Acanthopanax chilsanensis. Korean J Biotechnol Bioeng 16: 71-75.
  51. Yook CS, Rho YS, Seo SH, Leem JY, Han DR. 1996. Chemical components of Acanthopanax divaricatus and anticancer effect in leaves. Yakhak Hoeji 40: 251-261.
  52. Kim CJ, Hahn DR. 1980. The biological activity of a new glycoside, chiisanoside from Acanthopanax chiisanensis Nakai leaves. Yakhak Hoeji 24: 123-134.
  53. Hahn DR, Kim CJ, Kim JH. 1985. A study on chemical constituents of Acanthopanax koreanum Nakai and its pharmaco-biological activities. Yakhak Hoeji 29: 357-361.
  54. Nishiyama N, Kamegaya T, Iwai A, Saito H, Sanada S, Ida Y, Shoji J. 1985. Effect of Eleutherococcus senticosus and Its components on sex- and learning-behaviours and tyrosine hydroxylase activities of adrenal gland and hypothalamic regions in chronic stressed mice. Shoyakugaku Zasshi 39: 238-242.
  55. Brekhman II, Dardymov IV. 1969. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol 9: 419-430. https://doi.org/10.1146/annurev.pa.09.040169.002223

피인용 문헌

  1. Effect of amaranth seed extracts on glycemic control in HepG2 cells vol.54, pp.6, 2017, https://doi.org/10.4163/jnh.2021.54.6.603