DOI QR코드

DOI QR Code

로컬 물리적 네트워크에서 효율적인 대역폭 공유를 위한 퍼지 기반의 동적 방법

A Fuzzy-based Dynamic Method for Efficient Sharing Bandwidth in Local Physical Network

  • ;
  • 박상현 (전남대학교 전자컴퓨터공학과) ;
  • 장종현 (한국전자통신연구원) ;
  • 박재형 (전남대학교 전자컴퓨터공학과) ;
  • 김진술 (전남대학교 전자컴퓨터공학과)
  • Ma, Linh-Van (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Park, Sanghyun (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Jang, Jong-hyun (Electronics and Telecommunications Research Institute) ;
  • Park, Jaehyung (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Kim, Jinsul (School of Electronics and Computer Engineering, Chonnam National University)
  • 투고 : 2017.04.22
  • 심사 : 2017.04.28
  • 발행 : 2017.04.30

초록

현재 정책은 대역폭 공유에 대하여 평균 처리량을 높이고 로컬 네트워크의 대역폭 사용률을 향상시킨다. 하지만 이러한 정책은 각각 네트워크 흐름에 대역폭을 할당해주는 중앙 관리에서 사용자 특성 기반의 리소스를 할당 할 수 없다. 따라서 사용자 특성기반의 서비스를 보장하지 않기 때문에 불평등한 대역폭 할당이 발생된다. 따라서 본 논문에서는 제한된 대역폭 네트워크에서 대역폭을 공유하는 새로운 방법을 제안한다. 제안한 방법은 이상적인 퍼지 시스템을 사용하여 제한된 장치의 현재 사용량에 따른 대역폭 요청여부를 추전하고 결정한다. 본 논문에서는 OPNET의 비디오 스트리밍 시뮬레이션과 WebRTC의 실시간 비디오 스트리밍으로 구성된 두 가지 실행을 수행한다. 수행한 실험 결과를 통해 제안 된 방법이 네트워크 환경에서 사용자의 요구사항을 기반으로 대역폭 사용을 유연하게 공유 할 수 있다는 것을 확인 할 수 있었다.

Current policies for sharing bandwidth increase average throughput and improve utilization of the bandwidth in the local network. However, with these policies, a central administer, which is responsible for allocating bandwidth to each network flow, cannot allocate resources based on user characteristics. Thus, it leads to unfair bandwidth allocation because it does not guarantee services based on user characteristics. Therefore, we propose a novel negotiation method to share the bandwidth in a limited bandwidth network, in which, a user negotiates with other users to gain more resource. Ideally, we use a fuzzy system to infer and determine whether a device will request bandwidth or not based on the current usage of the given device. We conduct two experiments consisting of a video streaming simulation in OPNET and a real-time video streaming in WebRTC. The results of the experiment indicate that the proposed method can flexibly share the bandwidth utilization based on user's requirement in the network.

키워드

참고문헌

  1. H. Kim and N. Feamster, "Improving network management with software defined networking," IEEE Communications Magazine, Vol.51, No.2, pp.114-119, February 2013. https://doi.org/10.1109/MCOM.2013.6461195
  2. S.H. Kang and A. Zakhor, "Effective bandwidth based scheduling for streaming media," IEEE transactions on Multimedia, Vol.7, No.6, pp.1139-1148, November 2005. https://doi.org/10.1109/TMM.2005.858401
  3. H. Qi, M. Stojmenovic, K. Li, Z. Li, and W. Qu, "A low transmission overhead framework of mobile visual search based on vocabulary decomposition," IEEE Transactions on Multimedia, Vol.16, No.7, pp.1963-1972, August 2014. https://doi.org/10.1109/TMM.2014.2345026
  4. P. Mehra, A. Zakhor, and C. De Vleeschouwer, "Receiver-driven bandwidth sharing for tcp," in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE, San Francisco, California, USA, pp.1145-1155, 2003.
  5. C.Y. Huang, K.T. Chen, D.Y. Chen, H.J. Hsu, and C.H. Hsu, "Gaminganywhere: The first open source cloud gaming system," ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), Vol.10, No.1s, p.10, January 2014.
  6. R.R. Yager and L.A. Zadeh, An introduction to fuzzy logic applications in intelligent systems, Springer Science & Business Media, 2012.
  7. R. Babuska, Fuzzy modeling for control, Springer Science & Business Media, 2012.
  8. E. Czogala and J. Leski, Fuzzy and neuro-fuzzy intelligent systems, Physica, 2012.
  9. H. Hellendoorn and D. Driankov, Fuzzy model identification: selected approaches, Springer Science & Business Media, 2012.
  10. R. Palm, D. Driankov, and H. Hellendoorn, Model based fuzzy control: fuzzy gain schedulers and sliding mode fuzzy controllers, Springer Science & Business Media, 2013.
  11. A. Johnston, J. Yoakum, and K. Singh, "Taking on webrtc in an enterprise," IEEE Communications Magazine, Vol.51, No.4, pp.48-54, April 2013. https://doi.org/10.1109/MCOM.2013.6495760
  12. Q. Liang, N.N. Karnik, and J.M. Mendel, "Connection admission control in atm networks using survey-based type-2 fuzzy logic systems," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol.30, No.3, pp.329-339, August 2000. https://doi.org/10.1109/5326.885114
  13. Q. Zhang, W. Zhu, and Y.Q. Zhang, "Resource allocation for multimedia streaming over the internet," IEEE Transactions on Multimedia, Vol.3, No.3, pp.339-355, September 2001. https://doi.org/10.1109/6046.944477
  14. Y.h. Chu, S.G. Rao, S. Seshan, and H. Zhang, "A case for end system multicast," IEEE Journal on selected areas in communications, Vol.20, No.8, pp.1456-1471, October 2002. https://doi.org/10.1109/JSAC.2002.803066
  15. S. Banerjee, B. Bhattacharjee, and C. Kommareddy, Scalable application layer multicast, in SIGCOMM '02 Proceedings of the 2002, Pittsburgh, Pennsylvania, USA, pp.205-217, 2002.
  16. X. Jin, W.P.K. Yiu, S.H.G. Chan, and Y. Wang, "On maximizing tree bandwidth for topology-aware peer-to-peer streaming," IEEE Transactions on Multimedia, Vol.9, No.8, pp.1580-1592, December 2007. https://doi.org/10.1109/TMM.2007.907459
  17. S. Akhshabi, A.C. Begen, and C. Dovrolis, "An experimental evaluation of rate-adaptation algorithms in adaptive streaming over http," in Proceedings of the second annual ACM conference on Multimedia systems, San Jose, CA, USA, pp.157-168, 2011.
  18. S. Lederer, C. Muller, and C. Timmerer, "Dynamic adaptive streaming over http dataset," in Proceedings of the 3rd Multimedia Systems Conference, Chapel Hill, North Carolina, pp.89-94, 2012.
  19. O. Oyman and S. Singh, "Quality of experience for http adaptive streaming services," IEEE Communications Magazine, Vol.50, No.4, April 2012.
  20. T. Stockhammer, "Dynamic adaptive streaming over http-: standards and design principles," in Proceedings of the second annual ACM conference on Multimedia systems, San Jose, CA, USA, pp.133-144, 2011.
  21. Linh VM, Jang JH, Kim J, "Adjusting Local Network Speed by Using Fuzzy Theory with An Illustration in WebRTC Environment," The Journal of Digital Contents Society, Vol. 16, No. 6, pp. 917-925, December 2015. https://doi.org/10.9728/dcs.2015.16.6.917
  22. Linh VM, S. Park, J. Jang, J. Park, J. Kim, "A Dynamical Load Balancing Method for Data Streaming and User Request in WebRTC Environment," The Journal of Digital Contents Society, Vol. 17, No. 6, pp. 581-592, December 2016. https://doi.org/10.9728/dcs.2016.17.6.581
  23. A.B. Johnston and D.C. Burnett, WebRTC: APIs and RTCWEB protocols of the HTML5 real-time web, Digital Codex LLC, 2012.
  24. B. Radunovic and J.Y.L. Boudec, "A unified framework for max-min and min-max fairness with applications," IEEE/ACM Transactions on Networking (TON), Vol.15, No.5, pp.1073-1083, October 2007. https://doi.org/10.1109/TNET.2007.896231
  25. Priologic Software Inc. Easyrtc open source. Available: https://github.com/priologic/easyrtc/.
  26. V. Mulhollon, Wondershaper: Simple network traffic shaping tool for ubuntu linux. vlm@debian.org, 2004.
  27. W. Team, Webcamstudio for gnu/linux. soylent.tv@gmail.com, 2014.

피인용 문헌

  1. LR-PON에서 고정형 다중 스레드 기반의 동적대역할당 vol.18, pp.6, 2017, https://doi.org/10.9728/dcs.2017.18.6.1207