DOI QR코드

DOI QR Code

Performance of LDPC Product Code According to Error Factors on Holographic Data Storage System

홀로그래픽 데이터 저장장치 시스템에서 오류요인에 따른 LDPC 곱부호의 성능

  • Jeong, Seongkwon (Department of ICMC convergence technology, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 정성권 (숭실대학교 정보통신소재융합학과) ;
  • 이재진 (숭실대학교 전자정보공학부)
  • Received : 2017.03.13
  • Accepted : 2017.04.07
  • Published : 2017.05.25

Abstract

Holographic data storage system (HDSS) features short access times, high storage capacities, and fast transfer rates, since the data is recorded and read not by lines but by pages within a volume of holographic material. Burst error caused by physical impact on the high density storage system becomes very longer than that of conventional storage systems. This paper proposes an LDPC product code using two LDPC code to resolve burst error. When a total code rate is similar, the performance of two LDPC code having high code rate is better than that of one LDPC code having low code rate. Also, with error factors of two-dimensional intersysbol interference and misalignment, the proposed scheme can improve the performance in holographic data storage system.

홀로그래픽 데이터 저장장치 시스템은 데이터를 줄 단위로 처리하는 것이 아닌 홀로그래픽 매질에 페이지 단위로 처리하기 때문에 빠른 접근 시간, 고용량, 높은 전송 속도의 장점을 갖는다. 하지만 고밀도 저장장치일수록 물리적인 영향에 의해 발생되는 연집오류의 길이는 기존의 저장장치보다 더욱 크다. 본 논문에서는 두 개의 LDPC 부호를 이용한 곱부호 방식을 사용하여 연집오류의 해결 성능을 알아본다. 제안하는 곱부호는 유사한 코드율 일 때, 코드율이 낮은 하나의 LDPC를 사용하는 하는것 보다 코드율이 높은 두개의 LDPC 부호를 이용하는 것이 더 좋은 성능을 보였다. 또한 2차원 인접 심볼간 간섭 및 어긋남이 발생하여도 성능을 향상시킬 수 있다.

Keywords

References

  1. D. Gabor, "Associative holographic memories," IBM J. Res. Develop., pp. 156-159, 1969.
  2. E. L. Kral, J. F.Walkup, and M. O. Hagler, Correlation properties of random phase diffusers for multiplex holography," Appl. Opt., Vol. 21, no.7, pp. 1281-1290, April 1982. https://doi.org/10.1364/AO.21.001281
  3. A. E. Krasnov, "Thick-film phase holograms recorded by means of coded reference waves," Sov. J. Quantum. Electron., Vol. 7, no. 9, pp. 1147-1148, 1977. https://doi.org/10.1070/QE1977v007n09ABEH012821
  4. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," in Proc. IEEE, Vol. 92, no. 8, pp. 1231-1280, 2004. https://doi.org/10.1109/JPROC.2004.831212
  5. D. Psaltis, A. Pu, M. Levene, K. Curtis, and G. Barbastathis, "Holographic storage using shift multiplexing," Opt. Lett., Vol. 20, no. 7, pp. 782-784, 1995. https://doi.org/10.1364/OL.20.000782
  6. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Appl. Opt., Vol. 38, no. 20, pp. 4374-4386, July 1999. https://doi.org/10.1364/AO.38.004374
  7. K. Park, B. Kim, and J. Lee, "A 6/9 Four-Ary Modulation Code for Four-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE05, September 2013. https://doi.org/10.7567/JJAP.52.09LE05
  8. S. Kim and J. Lee, "A Simple 2/3 Modulation Code for Multi-Level Holographic Data Storage," Jpn. J. Appl. Phys., Vol. 52, no. 9, pp. 09LE04, September 2013. https://doi.org/10.7567/JJAP.52.09LE04
  9. J. Kim and J. Lee, "Two-dimensional 5:8 modulation code for holographic data storage," Jpn. J. Appl. Phys., Vol. 48, no. 3, pp. 03A031, March 2009.
  10. J. Kim, J. Wee, and J. Lee, "Error correcting 4/6 modulation codes for holographic data storage," Jpn. J. Appl. Phys., Vol. 49, no. 8, pp. 08KB04, August 2010.
  11. J. Park, S. Jeong, and J. Lee, "Equally scattered interleaving for holographic data storage systems," Jpn. J. Appl. Phys., Vol. 54, pp. 09MA02, August 2015. https://doi.org/10.7567/JJAP.54.09MA02
  12. J. Lee, J. Lee, and T. Park, "Error control scheme for high-speed DVD systems," IEEE Trans. Consum. Electron., Vol. 51, no. 4, pp. 1197-1203, 2005. https://doi.org/10.1109/TCE.2005.1561844
  13. Y. Han, W. E. Ryan, and R. D. Wesel, "Dual-mode decoding of product codes with application to tape storage," in Proc. IEEE 2005 Global Communications Conf., St. Louis, USA.
  14. T. V. Vo, and S. Mita, "A novel error-correcting system based on product codes for future magnetic recording channels," IEEE Trans. Magn., Vol. 47, no. 10, pp. 3320-3323, 2011. https://doi.org/10.1109/TMAG.2011.2157091
  15. D. Park and J. Lee, "Performance evaluation of LDPC-LDPC product code for next magnetic recording channel," Journal of The Institute of Electronics and Information Engineers, Vol. 49, no. 11, 2012.
  16. S. Jeong and J. Lee, "Iterative LDPC-LDPC Product Code for Bit Patterned Media," IEEE Trans. Magn., vol. 53, no. 3, pp. 3100704, March 2017.
  17. S. Jeong and J. Lee, "LDPC product coding scheme with extrinsic information for bit patterned media recoding," AIP Adv., vol. 7, no. 5, pp. 056513, March 2017. https://doi.org/10.1063/1.4978219
  18. D. E. Pansatiankul and A. A. Sawchuk, "Multi-dimensional modulation codes and error correction for page-oriented optical data storage," Proc. SPIE, Vol. 4342, pp. 393-400, January 2002.
  19. M. Keskinoz and B. V. K. V. Kumar, "Efficient modeling of volume holographic storage channels (VHSC)," Proc. SPIE, Vol. 4090, pp. 205-210, September. 2000.