DOI QR코드

DOI QR Code

Factors Affecting Intention to Use Smartphone Healthcare Applications

스마트폰 헬스케어 어플리케이션 수용의도에 영향을 미치는 요인

  • Received : 2017.03.07
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

This was a descriptive survey to determine the intention of users to use smartphone healthcare applications (SHAs) and to clarify factors that may influence such intention. The data were collected during the month of April in 2015, using a structured self-report questionnaire that was distributed to 300 participants aged 20 to 70 years; 285 complete copies were used for the final analysis. The data were analyzed using descriptive statistics, independent t-test, one-way ANOVA, Pearson correlation coefficients, and hierarchical multiple regression. First, according to the results, the average intention to use SHAs was 3.28 out of 5, which varied according to age, final education, economy level, vacation, current disease, total period of smartphone use, and etc. Second, significant correlations were shown by exercise behavior, dietary management behavior, stress management, satisfaction with smartphone use, and satisfaction with using SHAs. Third, the explanatory power of the predictive model involving all general, health-related, smartphone use-related, and SHA use-related factors was 45.5%; and the economic level, interest, status, and awareness satisfaction of patients using SHA were identified to be the main influential factors. The results indicate that SHA developers need to put efforts into improving consumers' app recognition and to develop plans in provoking consumers' interests to increase the use of SHAs.

본 연구는 스마트폰 헬스케어 어플리케이션의 수용의도와 이에 영향을 미치는 요인을 확인하기 위해 시행된 서술적 조사연구이다. 본 연구에서는 2015년 4월 자가보고식 설문지를 이용하여 20~70대 300명을 대상으로 자료를 수집하였으며, 최종적으로 285명의 자료가 기술통계, independent t-test, One-way ANOVA, Pearson correlation coefficients, hierarchical multiple regression를 이용하여 분석되었다. 연구 결과, 헬스케어 어플리케이션의 수용의도는 점수가능범위 1~5점 중 3.28점이었으며, 연령, 교육 및 경제 수준, 직업 및 질병 여부, 스마트폰 사용 기간 등에 따라 차이가 있었고, 운동실천 정도, 식이 및 스트레스 관리 정도, 스마트폰 및 헬스케어 어플리케이션 사용 만족 정도에 따라 유의한 상관관계가 있었다. 그리고 연구대상자의 일반적 및 건강관련 특성, 스마트폰 및 헬스케어 어플리케이션 사용 관련요인은 헬스케어 어플리케이션에 대한 수용의도를 45.5% 설명하였으며, 특히 경제수준, 헬스케어 어플리케이션에 대한 인지 만족도와 관심 여부가 수용의도에 영향을 미치는 주요 요인으로 확인되었다. 이 연구 결과를 바탕으로 스마트폰 헬스케어 어플리케이션 개발 시 스마트폰 어플리케이션에 대한 사용자의 인지 수준을 높이고 흥미를 이끌어 낼 수 있는 다양한 전략들을 함께 개발 및 적용할 것을 제언하는 바이다.

Keywords

References

  1. Y. J. Kim, "Exploratory study on acceptance intention of mobile devices and applications for healthcare services", Journal of Contents Association, vol. 12, no. 9, pp. 369-379, 2012. DOI: http://dx.doi.org/10.5392/JKCA.2012.12.09.369
  2. B. Chaudhry, J. Wang, S. Wu, M. Maglione, W. Mojica, E. Roth, S. C. Morton, P. G. Shekelle, "Systematic review: impact of health information technology on quality, efficiency, and costs of medical care", Annals of Internal Medicine, vol. 144, no. 10, pp. 742-752, 2006. DOI:Ohttp://doi.org/10.7326/0003-4819-144-10-200605160-00125
  3. P. Chau, P. Hu, "Investigating healthcare professionals' decisions to accept telemedicine technology: an empirical test of competing theories" Information & Management, vol. 39, no. 4, pp:297-311. 2002. DOI: http://dx.doi.org/10.1016/S0378-7206(01)00098-2
  4. C. Free, G. Phillips, L. Watson, L. Galli, L. Felix, P. Edwards, V. Patel, A. Haines, "The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis", PLoS Medicine, vol. 10, no. 1, e1001363, 2013;. DOI: http://dx.doi.org/10.1371/journal.pmed.1001363
  5. Z. Zheng, "User acceptance of mobile healthcare applications: an integrated model of UTAUT and HBM theory", Korean Policy Sciences Review, vol. 19. no. 3. pp. 203-236, 2015.
  6. L. Dennison, L. Morrison, G. Conway, L. Yardley, "Opportunities and challenges for smartphone applications in supporting health behavior change: qualitative study", Journal of Medical Internet Research, vol. 15, no. 4, e86, 2013. DOI: https://doi.org/10.2196/jmir.2583
  7. The Office of the National Coordinator for Health Information Technology (ONC) [Internet]. Federal Health IT Strategic Plan 2015-2020 [cited at 2016 Mar 3], Available from: https://www.healthit.gov/sites/default/files/9-5-federalheal thitstratplanfinal_0.pdf.
  8. J, Sun, Y. Guo, X. Wang, Q. Zeng, "mHealth for aging china: opportunities and challenges", Aging and Disease, vol. 7, no. 1, pp. 53067, 2006. DOI: https://doi.org/10.14336/AD.2015.1011
  9. Jeong HY. Advances in Computer Science and its Applications. p.1241-1249, Springer, 2014. DOI: https://doi.org/10.1007/978-3-642-41674-3
  10. Apple Press Info [Internet]. iPhone App Store Downloads Top 10 Million in First Weekend [cited at 2016 Mar 3], Available from: http://www.apple.com/pr/library/2008/07/14iPhone-App- Store-Downloads-Top-10-Million-in-First-Weekend.html.
  11. Research 2 Guidance [Internet]. mHealth App Developer Economics 2015 [cited at 2016 Mar 3], Available from: http://research2guidance.com/r2g/r2g-mHealth-App-Deve loper-Economics-2015.pdf
  12. K. Huckvale, S. Adomaviciute, J. T. Prieto, M. K. S. Leow, J. Car. "Smartphone apps for calculating insulin dose: a systematic assessment", BMC Medicine, vol. 13, no. 1, p.106, 2015. DOI: https://doi.org/10.1186/s12916-015-0314-7
  13. A. Bianchi, J. G. Phillips, "Psychological predictors of problem mobile phone use", Cyber psychology & Behavior, Vo;.8, no. 1, pp. 39-51, 2005. DOI: https://doi.org/10.1089/cpb.2005.8.39
  14. A. Van Deursen, C. L. Bolle, S. M. Hegner, P. Kommers, "Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender", Computers in Human Behavior, vol. 45, pp. 411-420, 2015. DOI: https://doi.org/10.1016/j.chb.2014.12.039
  15. P. Krebs, D. T. Duncan. "Health app use among US mobile phone owners: a national survey", JMIR Mhealth Uhealth, vol. 3, no. 4, e101, 2015. DOI: https://doi.org/10.2196/mhealth.4924
  16. F. Faul, E. Erdfelder, A. G. Lang., A. Buchner, "G*Power 3: A flexible statistical power analysis program for the social, behavior, and biomedical sciences", Behavior Research Methods , vol. 39, no. 2, pp. 175-191, 2007. DOI: https://doi.org/10.3758/BF03193146
  17. Y. Wang, "A study on the influencing factors of intention to use of smart phone applications", Unpublished master's thesis, Chungbuk University, Cheongju, Korea, 2013.
  18. J. H. Kim, "A study on factors relation to health promotion behavior in college students", Unpublished doctoral dissertation, Inje University, Kimhae, Korea, 2007.
  19. B. C. Zapata, J. L. Fernandez-Aleman, A. Idri, A. Toval, "Empirical studies on usability of mHealth apps: a systematic literature review. Journal of Medical System. vol. 39, no. 2, p.1, 2015. DOI: https://doi.org/10.1007/s10916-014-0182-2
  20. H. Yoo, H. Y. Han, H. M. Oh, M. J. Park, "The effects of family communication and family cohesion on elderly women's depression and quality of life" Journal of the Korean Data Analysis Society, vol. 17, no. 1, pp. 469-483, 2015.
  21. Y. U. Chang, Y. S. Jung, "An empirical study on a use-diffusion model of medical service consumer's web based application usage", Management & Information Systems Review, vol. 32, no. 5, pp. 19-43, 2013.