DOI QR코드

DOI QR Code

A SURVEY OF N-STRING TANGLE ANALYSES OF DNA-ENZYME SYNAPTIC COMPLEXES

  • Received : 2016.12.21
  • Accepted : 2017.03.05
  • Published : 2017.05.30

Abstract

In last 30 years, mathematical tangle theory is applied to molecular biology, especially to DNA topology. The recent issues and research results of this topic are reviewed in this paper. We introduce a tangle which models an enzyme-DNA complex. The studies of 2-string tangle equations related to Topoisomerase II action and site-specific recombination is discussed. And 3-string tangle analysis of Mu-DNA complex, n-string tangle analysis ($n{\geq}4$) of DNA-enzyme synaptic complexes are also discussed.

Keywords

References

  1. A.D. Bates and A. Maxwell, DNA Topology, Oxford University Press, Oxford, 2005.
  2. D. Buck and C.V. Marcotte, Tangle solutions for a family of DNA rearranging proteins, Math. Proc. Camb. Phil. Soc. 139 (2005), 59-80. https://doi.org/10.1017/S0305004105008431
  3. J.H. Conway, An enumaration of knots and links and some of their related properties, Computational Problems in Abstract Algebra (John Leech, ed.), Pergamon Press, Oxford and New York, 1969.
  4. M.C. Culler and C.M. Gordon, J. Luecke and P.B. Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987), 237-300. https://doi.org/10.2307/1971311
  5. I.K. Darcy, Solving unoriented tangle equations involving 4-plats, J. Knot Theory Ramifications 14 (2005), 993-1005. https://doi.org/10.1142/S0218216505004202
  6. I.K. Darcy, Solving oriented tangle equations involving 4-plats, J. Knot Theory Ramifications 14 (2005), 1007-1027. https://doi.org/10.1142/S0218216505004214
  7. I.K. Darcy, J. Luecke, and M. Vazquez, Tangle analysis of dierence topology experiments, Applications to a Mu protein-dna complex, Algebraic and Geometric Topology 9 (2009), 2247-2309. https://doi.org/10.2140/agt.2009.9.2247
  8. F.B. Dean, A. Stasiak, T. Koller, and N.R. Cozzarelli, Duplex DNA knots produced by Escherichia Coli topoisomerase I, J. Biol. Chem. 260 (1985), 4795-4983.
  9. C. Ernst, Tangle equations, J. Knot Theory Ramications 5 (1996), 145-159. https://doi.org/10.1142/S0218216596000114
  10. C. Ernst and D.W. Sumners, A calculus for rational tangles, applications to DNA recombination, Math. Proc. Camb. Phil. Soc. 108 (1990), 489-515. https://doi.org/10.1017/S0305004100069383
  11. C. Ernst and D.W. Sumners, Solving tangle equations arising in a DNA recombination model, Math. Proc. Camb. Phil. Soc. 126 (1990), 23-36.
  12. M. Hirasawa and K. Shimokawa, Dehn surgeries on strongly invertible knots which yield lens spaces, Proc. Amer. Math. Soc. 128 (2000) 3445-3451. https://doi.org/10.1090/S0002-9939-00-05417-4
  13. S. Kim, A generalized 4-string solution tangle of DNA-protein complexes, J. KSIAM 15 (2011) 161-175.
  14. S. Kim, Topological analysis of Mu transposition, J. KSIAM 17 (2013) 87-102.
  15. S. Kim and I.K. Darcy, Topological analysis of DNA-protein complexes, Mathematics of DNA Structure, Function, and Interactions, IMA 150 (2009) 177-194.
  16. S. Kim and I.K. Darcy, 4-string tangle analysis of DNA-protein complexes based on difference topology experiment, J. Knot Theory Ramifications 24, 1550056 (2015) https://doi.org/10.1142/S021821651550056X
  17. P. Kronheimer, T. Mrowka, P. Ozsvath, and Z. Szabo, Monopoles and lens space surgeries, Ann. of Math. 165 (2007), 457-546. https://doi.org/10.4007/annals.2007.165.457
  18. S. Pathania, M. Jayaram, and R.M. Harshey, Path of DNA within the Mu transpososome: transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils, Cell 109 (2002), 425-436. https://doi.org/10.1016/S0092-8674(02)00728-6
  19. Z. Petrushenko, C. Lai, R. Rai, and V. Rybenkov, DNA reshaping by MukB, J. Biol. Chem. 281 (2006), 4604-4615.
  20. Y. Saka and M. Vazquez, Tanglesolve, topological analysis of site-specific recombination, Bioinformatics 18 (2002), 1011-1012. https://doi.org/10.1093/bioinformatics/18.7.1011
  21. R.G. Scharein, Interactive Topological Drawing, PhD thesis, Department of Computer Science, The University of British Columbia, 1998.
  22. D.W. Sumners, C. Ernst, N.R. Cozzarelli, and S.J. Spengler, Mathematical analysis of the mechanisms of DNA recombination using tangles, Quarterly Reviews of Biophysics 28 (1995).
  23. M. Vazquez and D.W. Sumners, Tangle analysis of gin site-specic recombination, Math. Proc. Camb. Phil. Soc. 136 (2004), 565-582. https://doi.org/10.1017/S0305004103007266
  24. A. Vetcher, A.Y. Lushnikov, J. Navarra-Madsen, R. Scharein, Y. Lyubchenko, I. Darcy, and S. Levene, DNA topology and geometry in Flp and Cre recombination, J. Mol. Biol. 357 (2006), 1089-1104. https://doi.org/10.1016/j.jmb.2006.01.037
  25. J.C. Wang, Cellular roles of DNA topoisomerases, a molecular perspective, Nature Revies Molecular Cell Biology 3 (2002), 430-440. https://doi.org/10.1038/nrm831
  26. S.A. Wasserman and N.R. Cozzarelli, Determination of the stereostructure of the product of Tn3 resolvase by a general method, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), 1079-1083. https://doi.org/10.1073/pnas.82.4.1079
  27. S.A. Wasserman, J.M. Dungan, and N.R. Cozzarelli, Discovery of a predicted DNA knot substantiates a model for site-specific recombination, Science 229 (1985), 171-174. https://doi.org/10.1126/science.2990045
  28. J.D. Watson and F.H.C. Crick, A Structure for Deoxyribose Nucleic Acid, Nature 171(1953), 737-738. https://doi.org/10.1038/171737a0