References
- R. Abo Zeid, Global attractivity of a higher-order difference equation, Discrete Dyn. Nat. Soc. 2012 (2012) Article ID 930410, 11 pages.
- A.M. Ahmed, On the dynamics of a higher-order rational difference equation, Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 419789, 8 pages.
-
D. Chen, X. Li and Y. Wang, Dynamics for non-linear difference equation
$x_{n+1}$ =$({\alpha}x_{n-k})/({\beta}+{\gamma}x^p_{n-l})$ , Adv. Difference Equ. 2009 (2009), Article ID 235691, 13 pages. -
H.M. El-Owaidy, A.M. Ahmed and A.M. Youssef, The dynamics of the recursive sequence
$x_{n+1}$ =$({\alpha}x_{n-1})/({\beta}+{\gamma}x^p_{n-2})$ , Applied Mathematics Letters 18 (2005), 1013-1018. https://doi.org/10.1016/j.aml.2003.09.014 - E.M. Elsayed, New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear Dynam. 79 (2014), 241-250.
- E.M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 982309, 18 pages.
-
M.E. Erdogan, C. Cinar and I. Yalcinkaya, On the dynamics of the recursive sequence
$x_{n+1}$ =$({\alpha}x_{n-1})/({\beta}+{\gamma}{\Sigma}^t_{k=l}x_{n-2k}{\prod}_{k=1}^{t}x_{n-2k})$ , Math. Comput. Modelling 54 (2011), 1481-1485: https://doi.org/10.1016/j.mcm.2011.04.020 -
M.E. Erdogan and C. Cinar, On the dynamics of the recursive sequence sequence
$x_{n+1}$ =$({\alpha}x_{n-1})/({\beta}+{\gamma}{\Sigma}^t_{k=l}x^p_{n-2k}{\prod}_{k=1}^{t}x^q_{n-2k})$ , Fasciculi Mathematici 50 (2013), 59-66. -
M. Gumus, The periodicity of positive solutions of the non-linear difference equation sequence
$x_{n+1}$ =${\alpha}+(x^p_{n-k}/x^q_n)$ , Discrete Dyn. Nat. Soc. 2013 (2013), Article ID 742912, 3 pages. -
A.E. Hamza and R. Khalaf-Allah, On the recursive sequence sequence
$x_{n+1}$ =$(A{\prod}_{i=l}^{k}x_{n-2i-1})/(B+C{\prod}_{i=l}^{k-1}x_{n-2i})$ , Computers and Mathematics with Applications 56 (2008), 1726-1731. https://doi.org/10.1016/j.camwa.2008.04.014 - R. Karatas, Global behavior of a higher order difference equation, Comput. Math. Appl. 60 (2010), 830-839. https://doi.org/10.1016/j.camwa.2010.05.030
- V. Kocic. and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
- M.R.S. Kulenovic and G. Ladas, Dynamics of second order rational difference equations, Chapman & Hall/CRC, 2001.
- R. Karatas, Global behavior of a higher order difference equation, Comput. Math. Appl. 60 (2010), 830-839. https://doi.org/10.1016/j.camwa.2010.05.030
- O. Ocalan, Global dynamics of a non-autonomous rational difference equation, J. Appl. Math. & Informatics 32 (2014), 843-848. https://doi.org/10.14317/jami.2014.843
- O. Ocalan, H. Ogunmez and M. Gumus, Global behavior test for a non-linear difference equation with a period-two coefficient, Dynam. Cont. Dis. Ser. A. 21 (2014), 307-316.
-
I. Yalcinkaya and C. Cinar, On the dynamics of the difference equation
$x_{n+1}$ =$(ax_{n-k})/(b+cx^p_n)$ , Fasciculi Mathematici 42 (2009), 141-148.