DOI QR코드

DOI QR Code

THE DYNAMICS OF POSITIVE SOLUTIONS OF A HIGHER ORDER FRACTIONAL DIFFERENCE EQUATION WITH ARBITRARY POWERS

  • GUMUS, MEHMET (Department of Mathematics, Bulent Ecevit University) ;
  • SOYKAN, YUKSEL (Department of Mathematics, Bulent Ecevit University)
  • Received : 2015.11.20
  • Accepted : 2017.02.24
  • Published : 2017.05.30

Abstract

The purpose of this paper is to investigate the local asymptotic stability of equilibria, the periodic nature of solutions, the existence of unbounded solutions and the global behavior of solutions of the fractional difference equation $$x_{n+1}=\frac{^{{\alpha}x}n-1(k+1)}{{\beta}+{\gamma}x^p_{n-k}x^q_{n-(k+2)}}$$, $$n=0,1,{\dots}$$ where the parameters ${\alpha}$, ${\beta}$, ${\gamma}$, p, q are non-negative numbers and the initial values $x_{-(k+2)}$,$x_{-(k+1)}$, ${\dots}$, $x_{-1}$, $x_0{\in}\mathb{R}^+$.

Keywords

References

  1. R. Abo Zeid, Global attractivity of a higher-order difference equation, Discrete Dyn. Nat. Soc. 2012 (2012) Article ID 930410, 11 pages.
  2. A.M. Ahmed, On the dynamics of a higher-order rational difference equation, Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 419789, 8 pages.
  3. D. Chen, X. Li and Y. Wang, Dynamics for non-linear difference equation $x_{n+1}$ = $({\alpha}x_{n-k})/({\beta}+{\gamma}x^p_{n-l})$, Adv. Difference Equ. 2009 (2009), Article ID 235691, 13 pages.
  4. H.M. El-Owaidy, A.M. Ahmed and A.M. Youssef, The dynamics of the recursive sequence $x_{n+1}$ = $({\alpha}x_{n-1})/({\beta}+{\gamma}x^p_{n-2})$, Applied Mathematics Letters 18 (2005), 1013-1018. https://doi.org/10.1016/j.aml.2003.09.014
  5. E.M. Elsayed, New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear Dynam. 79 (2014), 241-250.
  6. E.M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 982309, 18 pages.
  7. M.E. Erdogan, C. Cinar and I. Yalcinkaya, On the dynamics of the recursive sequence $x_{n+1}$ = $({\alpha}x_{n-1})/({\beta}+{\gamma}{\Sigma}^t_{k=l}x_{n-2k}{\prod}_{k=1}^{t}x_{n-2k})$, Math. Comput. Modelling 54 (2011), 1481-1485: https://doi.org/10.1016/j.mcm.2011.04.020
  8. M.E. Erdogan and C. Cinar, On the dynamics of the recursive sequence sequence $x_{n+1}$ = $({\alpha}x_{n-1})/({\beta}+{\gamma}{\Sigma}^t_{k=l}x^p_{n-2k}{\prod}_{k=1}^{t}x^q_{n-2k})$, Fasciculi Mathematici 50 (2013), 59-66.
  9. M. Gumus, The periodicity of positive solutions of the non-linear difference equation sequence $x_{n+1}$ = ${\alpha}+(x^p_{n-k}/x^q_n)$, Discrete Dyn. Nat. Soc. 2013 (2013), Article ID 742912, 3 pages.
  10. A.E. Hamza and R. Khalaf-Allah, On the recursive sequence sequence $x_{n+1}$ = $(A{\prod}_{i=l}^{k}x_{n-2i-1})/(B+C{\prod}_{i=l}^{k-1}x_{n-2i})$, Computers and Mathematics with Applications 56 (2008), 1726-1731. https://doi.org/10.1016/j.camwa.2008.04.014
  11. R. Karatas, Global behavior of a higher order difference equation, Comput. Math. Appl. 60 (2010), 830-839. https://doi.org/10.1016/j.camwa.2010.05.030
  12. V. Kocic. and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
  13. M.R.S. Kulenovic and G. Ladas, Dynamics of second order rational difference equations, Chapman & Hall/CRC, 2001.
  14. R. Karatas, Global behavior of a higher order difference equation, Comput. Math. Appl. 60 (2010), 830-839. https://doi.org/10.1016/j.camwa.2010.05.030
  15. O. Ocalan, Global dynamics of a non-autonomous rational difference equation, J. Appl. Math. & Informatics 32 (2014), 843-848. https://doi.org/10.14317/jami.2014.843
  16. O. Ocalan, H. Ogunmez and M. Gumus, Global behavior test for a non-linear difference equation with a period-two coefficient, Dynam. Cont. Dis. Ser. A. 21 (2014), 307-316.
  17. I. Yalcinkaya and C. Cinar, On the dynamics of the difference equation $x_{n+1}$ = $(ax_{n-k})/(b+cx^p_n)$, Fasciculi Mathematici 42 (2009), 141-148.