References
- Catlett NL, Yoder OC, Turgeon BG. 2003. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2: 1151-1161. https://doi.org/10.1128/EC.2.6.1151-1161.2003
- Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. https://doi.org/10.1146/annurev.biochem.69.1.183
- MacLean D, Jones JD, Studholme DJ. 2009. Application of next-generation sequencing technologies to microbial genetics. Nat. Rev. Microbiol. 7: 287-296.
- Morozova O, Marra MA. 2008. Applications of nextgeneration sequencing technologies in functional genomics. Genomics 92: 255-264. https://doi.org/10.1016/j.ygeno.2008.07.001
- Buck V, Quinn J, Soto Pino T, Martin H, Saldanha J, Makino K, et al. 2001. Peroxide sensors for the fission yeast stressactivated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12: 407-419. https://doi.org/10.1091/mbc.12.2.407
- Ma Z, Luo Y, Michailides T. 2006. Molecular characterization of the two-component histidine kinase gene from Monilinia fructicola. Pest Manag. Sci. 62: 991-998. https://doi.org/10.1002/ps.1275
- Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T. 2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet. Biol. 42: 200-212. https://doi.org/10.1016/j.fgb.2004.11.002
- Nguyen AN, Lee A, Place W, Shiozaki K. 2000. Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11: 1169-1181. https://doi.org/10.1091/mbc.11.4.1169
- Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I. 2002. A point mutation in the twocomponent histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology 92: 75-80. https://doi.org/10.1094/PHYTO.2002.92.1.75
- Bahn YS, Kojima K, Cox GM, Heitman J. 2006. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol. Biol. Cell 17: 3122-3135. https://doi.org/10.1091/mbc.E06-02-0113
- Holliday R. 1974. Molecular aspects of genetic exchange and gene conversion. Genetics 78: 273-287.
- Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272. https://doi.org/10.1016/0378-1119(87)90131-4
- Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44: D279-D285. https://doi.org/10.1093/nar/gkv1344
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, MA. USA.
- Davidson RC, Blankenship JR, Kraus PR, de Jesus Berrios M, Hull CM, D'Souza C, et al. 2002. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 2607-2615. https://doi.org/10.1099/00221287-148-8-2607
- Wang J, Holden DW, Leong SA. 1988. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc. Natl. Acad. Sci. USA 85: 865-869. https://doi.org/10.1073/pnas.85.3.865
- Keon JP, White GA, Hargreaves JA. 1991. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr. Genet. 19: 475-481. https://doi.org/10.1007/BF00312739
- Yun YH, Hyun MW, Suh DY, Kim SH. 2009. Characterization of a sapstaining fungus, Ophiostoma floccosum, isolated from the sapwood of Pinus thunbergii in Korea. Mycobiology 37: 5-9. https://doi.org/10.4489/MYCO.2009.37.1.005
- Pringle JR, Preston RA, Adams AE, Stearns T, Drubin DG, Haarer BK, Jones EW. 1989. Fluorescence microscopy methods for yeast. Methods Cell Biol. 31: 357-435.
- Snetselaar KM, Bölker M, Kahmann R. 1996. Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet. Biol. 20: 299-312. https://doi.org/10.1006/fgbi.1996.0044
- Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bolker M, Kahmann R. 1992. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68: 647-657. https://doi.org/10.1016/0092-8674(92)90141-X
-
Molina L, Kahmann R. 2007. An Ustilago maydis gene involved in
$H_2O_2$ detoxification is required for virulence. Plant Cell 19: 2293-2309. https://doi.org/10.1105/tpc.107.052332 - Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, et al. 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97-101. https://doi.org/10.1038/nature05248
- Nemecek JC, Wüthrich M, Klein BS. 2006. Global control of dimorphism and virulence in fungi. Science 312: 583-588. https://doi.org/10.1126/science.1124105
- Kaserer AO, Andi B, Cook PF, West AH. 2009. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry 48: 8044-8050. https://doi.org/10.1021/bi900886g
- Li D, Gurkovska V, Sheridan M, Calderone R, Chauhan N. 2004. Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology 150: 3305-3313. https://doi.org/10.1099/mic.0.27237-0
- Pott GB, Miller TK, Bartlett JA, Palas JS, Selitrennikoff CP. 2000. The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet. Biol. 31: 55-67. https://doi.org/10.1006/fgbi.2000.1225
- Defosse T, Sharma A, Mondal AK, Duge de Bernonville T, Latge JP, Calderone R, et al. 2015. Hybrid histidine kinases in pathogenic fungi. Mol. Microbiol. 95: 914-924. https://doi.org/10.1111/mmi.12911
- Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA. 2002. fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med. Mycol. 40: 259-262.
- Torosantucci A, Chiani P, De Bernardis F, Cassone A, Calera JA, Calderone R. 2002. Deletion of the two-component histidine kinase gene (CHK1) of Candida albicans contributes to enhanced growth inhibition and killing by human neutrophils in vitro. Infect. Immun. 70: 985-987. https://doi.org/10.1128/IAI.70.2.985-987.2002
- Goswami RS, Xu JR, Trail F, Hilburn K, Kistler HC. 2006. Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Microbiology 152: 1877-1890. https://doi.org/10.1099/mic.0.28750-0
- Viaud M, Fillinger S, Liu W, Polepalli JS, Le Pecheur P, Kunduru AR, et al. 2006. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol. Plant Microbe Interact. 19: 1042-1050. https://doi.org/10.1094/MPMI-19-1042
- Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86: 865-875. https://doi.org/10.1016/S0092-8674(00)80162-2
Cited by
- Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans vol.4, pp.None, 2017, https://doi.org/10.1186/s40694-017-0043-0