References
- Commane D, Hughes R, Shortt C, Rowland I. 2005. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res. 591: 276-289. https://doi.org/10.1016/j.mrfmmm.2005.02.027
- Hammes WP, Tichaczek PS. 1994. The potential of lactic acid bacteria for the production of safe and wholesome food. Z. Lebensm. Unters. Forsch. 198: 193-201. https://doi.org/10.1007/BF01192595
- Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
- Hammes WP, Hertel C. 1998. New developments in meat starter cultures. Meat Sci. 49S1: S125-S138.
- Leroy F, Verluyten J, De Vuyst L. 2006. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 106: 270-285. https://doi.org/10.1016/j.ijfoodmicro.2005.06.027
- Champomier-Vergès MC, Chaillou S, Cornet M, Zagorec M. 2001. Lactobacillus sakei: recent developments and future prospects. Res. Microbiol. 152: 839-848. https://doi.org/10.1016/S0923-2508(01)01267-0
- Dembczynski R, Jankowski T. 2002. Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/starch liquid-core capsules. Enzyme Microb. Technol. 31: 111-115. https://doi.org/10.1016/S0141-0229(02)00080-7
- Klaenhammer TR, Kleeman EG. 1981. Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus. Appl. Environ. Microbiol. 41: 1461-1467.
- Takahashi H, Kai K, Shinbo Y, Tanaka K, Ohta D, Oshima T, et al. 2008. Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 391: 2769- 2782. https://doi.org/10.1007/s00216-008-2195-5
- Jin YX, Shi LH, Kawata Y. 2013. Metabolomics-based component profiling of Halomonas sp. KM-1 during dif ferent growth phases in poly(3-hydroxybutyrate) production. Bioresour. Technol. 140: 73-79. https://doi.org/10.1016/j.biortech.2013.04.059
- Vidoudez C, Pohnert G. 2012. Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics 8: 654-669. https://doi.org/10.1007/s11306-011-0356-6
- Chen MM, Li AL, Sun MC, Feng Z, Meng XC, Wang Y. 2014. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus. J. Zhejiang Univ. Sci. B 15: 333-342. https://doi.org/10.1631/jzus.B1300149
- Japelt KB, Nielsen NJ, Wiese S, Christensen JH. 2015. Metabolic fingerprinting of Lactobacillus paracasei: a multicriteria evaluation of methods for extraction of intracellular metabolites. Anal. Bioanal. Chem. 407: 6095-6104. https://doi.org/10.1007/s00216-015-8783-2
- Cui FX, Zhang RM, Liu HQ, Wang YF, Li H. 2015. Metabolic responses to Lactobacillus plantarum contamination or bacteriophage treatment in Saccharomyces cerevisiae using a GC-MS-based metabolomics approach. World J. Microbiol. Biotechnol. 31: 2003-2013. https://doi.org/10.1007/s11274-015-1949-4
- Zwietering MH, Jongenburger I, Rombouts FM, van't Riet K. 1990. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56: 1875-1881.
- Stentz R, Cornet M, Chaillou S, Zagorec M. 2001. Adaptation of Lactobacillus sakei to meat: a new regulatory mechanism of ribose utilization? Lait 81: 131-138. https://doi.org/10.1051/lait:2001117
- Liu SQ. 2003. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int. J. Food Microbiol. 83: 115-131. https://doi.org/10.1016/S0168-1605(02)00366-5
- Bergmaier D, Champagne CP, Lacroix C. 2003. Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. 95: 1049-1057. https://doi.org/10.1046/j.1365-2672.2003.02084.x
- Verges MCC, Zuniga M, Morel-Deville F, Perez-Martinez G, Zagorec M, Ehrlich SD. 1999. Relationships between arginine degradation, pH and survival in Lactobacillus sakei. FEMS Microbiol. Lett. 180: 297-304. https://doi.org/10.1111/j.1574-6968.1999.tb08809.x
- Christensen JE, Dudley EG, Pederson JA, Steele JL. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76: 217-246. https://doi.org/10.1023/A:1002001919720
- Garcia-Quintans N, Blancato VS, Repizo GD, Magni C, Lopez P. 2008. Citrate metabolism and aroma compound production in lactic acid bacteria, pp. 65-88. In Mayo B, Lopez P, Perez-Martinez G (eds.). Molecular Aspects of Lactic Acid Bacteria for Traditional and New Applications. Research Signpost, Kerala, India.
- Van Kranenburg R, Kleerebezem M, Van Hylckama Vlieg J, Ursing BM, Boekhorst J, Smit BA, et al. 2002. Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. Int. Dairy J. 12: 111-121. https://doi.org/10.1016/S0958-6946(01)00132-7
Cited by
- Whole-Genome Sequence of Lactobacillus sakei LT-13 Isolated from Moto Starter of Sake vol.5, pp.31, 2017, https://doi.org/10.1128/genomea.00651-17
- Lactobacillus sakei : A Starter for Sausage Fermentation, a Protective Culture for Meat Products vol.5, pp.3, 2017, https://doi.org/10.3390/microorganisms5030056
- Shotgun Metagenomics and Volatilome Profile of the Microbiota of Fermented Sausages vol.84, pp.3, 2017, https://doi.org/10.1128/aem.02120-17
- Antifungal activity and functional components of cell-free supernatant from Bacillus amyloliquefaciens LZN01 inhibit Fusarium oxysporum f. sp. niveum growth vol.33, pp.1, 2017, https://doi.org/10.1080/13102818.2019.1637279
- Metabolomics of Clinical Poisoning by Aconitum Alkaloids Using Derivatization LC-MS vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.00275
- Origin of Hypoglycemic Benefits of Probiotic-Fermented Carrot Pulp vol.67, pp.3, 2017, https://doi.org/10.1021/acs.jafc.8b06976
- Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis vol.35, pp.5, 2017, https://doi.org/10.1007/s11274-019-2645-6
- Harnessing microbial metabolomics for industrial applications vol.36, pp.1, 2017, https://doi.org/10.1007/s11274-019-2775-x
- Metabolomic profile of milk fermented with Streptococcus thermophilus cocultured with Bifidobacterium animalis ssp. lactis, Lactiplantibacillus plantarum, or both during storage vol.104, pp.8, 2017, https://doi.org/10.3168/jds.2021-20270