DOI QR코드

DOI QR Code

Electronic and carrier transport properties of small molecule donors

  • Received : 2016.08.22
  • Accepted : 2016.10.18
  • Published : 2017.03.25

Abstract

As electron donor/acceptor materials for organic photovoltaic cells, small-molecules donors/acceptor are attracting more and more attention. In this work, we investigated the electronic structures, electrochemical properties, and charge carrier transport properties of four recently-synthesized small-molecule donors/acceptor, namely, DPDCPB (A), DPDCTB (B), DTDCPB (A1), and DTDCTB (B1), by a series of ab initio calculations. The calculations look into the electronic structure of singly oxidized and reduced molecules, the first anodic and cathodic potentials, and the electrochemical gaps. Results of our calculations were in accord with those from experiments. Using Marcus theory, we also computed the reorganization energies of hole/electron hoppings, as well as hole/electron transfer integrals of multiple possible molecular dimer configurations. Our calculations indicated that the electron/hole transport properties are very sensitive to the relative separations/orientations between neighboring molecules. Due to high reorganization energies for electron hopping, the hole mobilities in the molecular crystals are at least an order of magnitude higher than the electron mobilities.

Keywords

Acknowledgement

Supported by : National Science Council of Taiwan

References

  1. Andzelm, J., Kolmel, C. and Klamt, A. (1995), "Incorporation of solvent effects into density functional calculations of molecular energies and geometries", J. Chem. Phys., 103(21), 9312-9320. https://doi.org/10.1063/1.469990
  2. Balzani, V. (2001), Electron Transfer in Chemistry, Wiley-VCH, Weinheim, Germany.
  3. Becke, A.D. (1988), "Density-functional exchange-energy approximation with correct asymptotic behavior", Phys. Rev. A, 38(6), 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
  4. Becke, A.D. (1993), "Density-functional thermochemistry. III. The role of exact exchange", J. Chem. Phys., 98(7), 5648-5652. https://doi.org/10.1063/1.464913
  5. Becke, D. (1993), "A new mixing of hartree-fock and local density-functional theories", J. Chem. Phys., 98(2), 1372-1377. https://doi.org/10.1063/1.464304
  6. Bixon, M. and Jortner, J. (1999), "Electron transfer: From isolated molecules to biomolecules", Adv. Chem. Phys., 106-107.
  7. Boudreault, P., Wakim, S., Blouin, N., Simard, M., Tessier, C.H., Tao, Y. and Leclerc, M. (2007), "Synthesis, characterization and application of indolo[3,2-b]carbazole semiconductors", J. Am. Chem. Soc., 129(29), 9125-9136. https://doi.org/10.1021/ja071923y
  8. Boudreault, P.L.T., Najari, A. and Leclerc, M. (2011), "Processable low-bandgap polymers for photovoltaic applications", Chem. Mater., 23(3), 456-469. https://doi.org/10.1021/cm1021855
  9. Chen, H.Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y. and Li, G. (2009), "Polymer solar cells with enhanced open-circuit voltage and efficiency", Nat. Photon., 3(11), 649-653. https://doi.org/10.1038/nphoton.2009.192
  10. Chen, Y.H., Lin, L.Y., Lu, C.W., Lin, F., Huang, Z.Y., Lin, H.W., Wang, P.H., Liu, Y.H., Wong, K.T., Wen, J., Miller, D.J. and Darling, S.B. (2012), "Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization", J. Am. Chem. Soc., 134(33), 13616-13623. https://doi.org/10.1021/ja301872s
  11. Deng, W.Q. and Goddard III, W.A. (2004), "Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations", J. Phys. Chem. B, 108(25), 8614-8621. https://doi.org/10.1021/jp0495848
  12. Gaussian 09, Revision D.01, Frisch, G.W., Trucks, H.B., Schlegel, G.E., Scuseria, M.A., Robb, J.R., Cheeseman, G., Scalmani, V., Barone, B., Mennucci, G.A., Petersson, H., Nakatsuji, M., Caricato, X., Li, H.P., Hratchian, A.F., Izmaylov, J., Bloino, G., Zheng, J.L., Sonnenberg, M., Hada, M., Ehara, K., Toyota, R., Fukuda, J., Hasegawa, M., Ishida, T., Nakajima, Y., Honda, O., Kitao, H., Nakai, T., Vreven, J.A., Montgomery, J.J.E., Peralta, F., Ogliaro, M., Bearpark, J.J., Heyd, E., Brothers, K.N., Kudin, V.N., Staroverov, R., Kobayashi, J., Normand, K., Raghavachari, A., Rendell, J.C., Burant, S.S., Iyengar, J., Tomasi, M., Cossi, N., Rega, J.M., Millam, M., Klene, J.E., Knox, J.B., Cross, V., Bakken, C., Adamo, J., Jaramillo, R., Gomperts, R.E., Stratmann, O., Yazyev, A.J., Austin, R., Cammi, C., Pomelli, J.W., Ochterski, R.L., Martin, K., Morokuma, V.G., Zakrzewski, G.A., Voth, P., Salvador, J.J., Dannenberg, S., Dapprich, A.D., Daniels, O ., Farkas, J.B., Foresman, J.V., Ortiz, J., Cioslowski, D.J. and Fox, G. Wallingford, C.T. (2009).
  13. Ginger, D.S. and Greenham, N.C. (1999), "Charge separation in conjugated-polymer/nanocrystal blends", Synt. Met., 101(1), 425-428. https://doi.org/10.1016/S0379-6779(98)00330-0
  14. Gratzel, M. (2003), "Dye-sensitized solar cells", J. Photochem. Photobio. C: Photochem. Rev., 4(2), 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1
  15. Grozema, F.C., Van Duijnen, P.T., Berlin, Y.A. and Ratner, S.M.A.L.D.A. (2002), "Intramolecular charge transport along isolated chains of conjugated polymers: Effect of torsional disorder and polymerization defects", J. Phys. Chem. B., 106(32), 7791-7795. https://doi.org/10.1021/jp021114v
  16. Hagfeldt, A. and Gratzel, M. (2000), "Molecular photovoltaics", Acc. Chem. Res., 33(5), 269-277. https://doi.org/10.1021/ar980112j
  17. Huang, F., Chen, K.S., Yip, H.L., Hau, S.K., Acton, O., Zhang, Y., Luo, J. and Jen, A.K.Y. (2009), "Development of new conjugated polymers with donor-pi-bridge-acceptor side chains for high performance solar cells", J. Am. Chem. Soc., 131(39), 13886-13887. https://doi.org/10.1021/ja9066139
  18. Hutchison, G.R., Ratner, M.A. and Marks, T.J. (2005), "Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors", J. Am. Chem. Soc., 127(48), 16866-16881. https://doi.org/10.1021/ja0533996
  19. Kippelen, B. and Bredas, J.L. (2009), "Organic photovoltaics", Energy Environ. Sci., 2(3), 251-261. https://doi.org/10.1039/b812502n
  20. Kirkpatrick, J. (2008), "An approximate method for calculating transfer integrals based on the ZINDO Hamiltonian", Int. J. Quantum Chem., 108(1), 51-56. https://doi.org/10.1002/qua.21378
  21. Klamt, A. and Schuumann, G. (1993), "COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient", J. Chem. Soc. Perkin Trans., 2(5), 799-805.
  22. Krebs, F.C. (2009), "Fabrication and processing of polymer solar cells: A review of printing and coating techniques", Sol. Energy Mater. Sol. Cell., 93(4), 394-412. https://doi.org/10.1016/j.solmat.2008.10.004
  23. Lee, C., Yang, W. and Parr, R.G. (1988), "Development of the colle-salvetti correlation-energy formula into a functional of the electron density", Phys. Rev. B, 37(2), 785-789. https://doi.org/10.1103/PhysRevB.37.785
  24. Lee, H., Jeong, K., Cho, S.W. and Yi, Y. (2012), "Theoretical study on the effects of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum: An efficient exciton blocking layer for organic photovoltaic cells", J. Chem. Phys., 137(3), 034704. https://doi.org/10.1063/1.4736729
  25. Li, X.Y. and He, F.C. (1999b), "Electron transfer between biphenyl and biphenyl anion radicals: Reorganization energies and electron transfer matrix elements", J. Comput. Chem., 20(6), 597-603. https://doi.org/10.1002/(SICI)1096-987X(19990430)20:6<597::AID-JCC5>3.0.CO;2-C
  26. Li, X.Y., Tang, X.S. and He, F.C. (1999a), "Electron transfer in poly (p-phenylene) oligomers: Effect of external electric field and application of Koopmans theorem", Chem. Phys., 248(2-3), 137-146. https://doi.org/10.1016/S0301-0104(99)00239-6
  27. Liang, C. and Newton, M.D. (1992), "Ab initio studies of electron transfer: Pathway analysis of effective transfer integrals", J. Phys. Chem., 96(7), 2855-2866. https://doi.org/10.1021/j100186a015
  28. Liang, Y., Xu, Z., Xia, J., Tsai, S.T., Wu, Y., Li, G. and Yu, L. (2010), "For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%", Adv. Mater., 22(20), E135-E138. https://doi.org/10.1002/adma.200903528
  29. Lin, L.Y., Chen, Y.H., Huang, Z.Y., Lin, H.W., Chou, S.H., Lin, F. and Wong, K.T. (2011), "A low-energygap organic dye for high-performance small-molecule organic solar cells", J. Am. Chem. Soc., 133(40), 15822-15825. https://doi.org/10.1021/ja205126t
  30. Marcus, R.A. (1993), "Electron transfer reactions in chemistry", Rev. Mod. Phys., 65(3), 599-610. https://doi.org/10.1103/RevModPhys.65.599
  31. Nelson, J., Kwiatkowski, J.J., Kirkpatrick, J. and Frost, J.M. (2009), "Modeling charge transport in organic photovoltaic materials", Acc. Chem. Res., 42(11), 1768-1778. https://doi.org/10.1021/ar900119f
  32. Newton, M.D. (1991), "Quantum chemical probes of electron-transfer kinetics: The nature of donor-acceptor interactions", Chem. Rev., 91(5), 767-792. https://doi.org/10.1021/cr00005a007
  33. Palenberg, M.A., Silbey, R.J., Malagoli, M. and Bredas, J.L. (2000), "Almost temperature independent charge carrier mobilities in liquid crystals", J. Chem. Phys., 112(3), 1541-1546. https://doi.org/10.1063/1.480700
  34. Pati, R. and Karna, S.P. (2001), "Ab initio hartree-fock study of electron transfer in organic molecules", J. Chem. Phys., 115(4), 1703-1715. https://doi.org/10.1063/1.1381409
  35. Paulson, B.P., Curtiss, L.A., Bal, B., Closs, G.L. and Miller, J.R. (1996), "Investigation of through-bond coupling dependence on spacer structure", J. Am. Chem. Soc., 118(2), 378-387. https://doi.org/10.1021/ja952852i
  36. Perdew, J.P. (1986), "Density-functional approximation for the correlation energy of the inhomogeneous electron gas", Phys. Rev. B, 33(12), 8822-8824. https://doi.org/10.1103/PhysRevB.33.8822
  37. Perdew, J.P. and Wang, Y. (1992), "Accurate and simple analytic representation of the electron-gas correlation energy", Phys. Rev. B, 45(23), 13244-13249. https://doi.org/10.1103/PhysRevB.45.13244
  38. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  39. Pietro, W.J., Marks, T.J. and Ratner, M.A. (1985), "Resistivity mechanisms in phthalocyanine-based linear-chain and polymeric conductors: Variation of bandwidth with geometry", J. Am. Chem. Soc., 107(19), 5387-5391. https://doi.org/10.1021/ja00305a011
  40. Riede, M., Mueller, T., Tress, W., Schueppel, R. and Leo, K. (2008), "Small-molecule solar cells-status and perspectives", Nanotech., 19(42), 424001. https://doi.org/10.1088/0957-4484/19/42/424001
  41. Roncali, J. (2009), "Molecular bulk heterojunctions: An emerging approach to organic solar cells", Acc. Chem. Res., 42(11), 1719-1730. https://doi.org/10.1021/ar900041b
  42. Ruhle, V., Lukyanov, A., May, F., Schrader, M., Vehoff, T., Kirkpatrick, J. and Andrienko, D. (2011), "Microscopic simulations of charge transport in disordered organic semiconductors", J. Chem. Theo. Comput., 7(10), 3335-3345. https://doi.org/10.1021/ct200388s
  43. Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J. and Brabec, C.J. (2006), "Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency", Adv. Mater., 18(6), 789-794. https://doi.org/10.1002/adma.200501717
  44. Smichidt-Mende, L., Fechtenkotter, A., Mullen, K., Friend, R.H. and Mackenzie, J.D. (2002), "Efficient organic photovoltaics from soluble discotic liquid crystalline materials", Phys. E, 24(1-2), 263-267.
  45. Sun, Y., Welch, G.C., Leong, W.L., Yakacs, C.J., Bazan, G.C. and Heeger, A.J. (2012), "Solution-processed small-molecule solar cells with 6.7% efficiency", Nat. Mater., 11(1), 44-48. https://doi.org/10.1038/nmat3160
  46. Tang, C.W. (1986), "Two-layer organic photovoltaic cell", Appl. Phys. Lett., 48(2), 183-185. https://doi.org/10.1063/1.96937
  47. Valeev, E.F., Coropceanu, V., Da Silva Filho, D.A., Salman, S. and Brédas, J.L. (2006), "Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors", J. Am. Chem. Soc., 128(30), 9882-9886. https://doi.org/10.1021/ja061827h
  48. Van Lenthe, E., Baerends, E.J. and Snijders, J.G. (1993), "Relativistic regular two‐component Hamiltonians", J. Chem. Phys., 99(6), 4597-4610. https://doi.org/10.1063/1.466059
  49. Voityuk, A.A., Rosch, N., Bixon, M. and Jortner, J. (2000), "Electronic coupling for charge transfer and transport in DNA", J. Phys. Chem. B, 104(41), 9740-9745. https://doi.org/10.1021/jp001109w
  50. Vosko, S.H., Wilk, L. and Nusair, M. (1980), "Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis", Can. J. Phys., 58(8), 1200-1211. https://doi.org/10.1139/p80-159
  51. Walker, B., Kim, C. and Nguyen, T.Q. (2011), "Small molecule solution-processed bulk heterojunction solar cells", Chem. Mater., 23(3), 470-482. https://doi.org/10.1021/cm102189g
  52. Wang, L., Xu, B., Zhang, J., Dong, Y., Wen, S., Zhang, H. and Tian, W. (2013), "Theoretical investigation of electronic structure and charge transport property of 9,10-distyrylanthracene (DSA) derivatives with high solid-state luminescent efficiency", Phys. Chem. Chem. Phys., 15(7), 2449-2458. https://doi.org/10.1039/c2cp41876b
  53. Wolfsberg, M. and Helmhotz, L. (1952), "The spectra and electronic structure of the tetrahedral ions $MnO_{4}^{-},\;CrO_{4}^{-},\;and\;ClO_4$", J. Chem. Phys., 20(5), 837-843. https://doi.org/10.1063/1.1700580
  54. Wong, W.Y., Wang, X.Z., He, Z., Djurišić, A.B., Yip, C.T., Cheung, K.Y. and Chan, W.K. (2007), "Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells", Nat. Mater., 6(7), 521-527. https://doi.org/10.1038/nmat1909
  55. Yu, G. and Heeger, A.J. (1995), "Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions", J. Appl. Phys., 78(7), 4510-4515. https://doi.org/10.1063/1.359792