DOI QR코드

DOI QR Code

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent

메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가

  • Kim, Jong-Doo (Department of Environmental Engineering, The University of Seoul) ;
  • Park, Chul-Hwi (Department of Environmental Engineering, The University of Seoul) ;
  • Yun, Yeo-Bog (Institute of Construction Technology, KUMHO Engineering and Construction) ;
  • Lee, Dae-Sung (Institute of Construction Technology, KUMHO Engineering and Construction) ;
  • Kim, Hyo-Jeon (Department of Civil & Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kang, Seok-Tae (Department of Civil & Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 김종두 (서울시립대학교 환경공학과) ;
  • 박철휘 (서울시립대학교 환경공학과) ;
  • 윤여복 (금호건설 기술연구소) ;
  • 이대성 (금호건설 기술연구소) ;
  • 김효전 (한국과학기술원 건설 및 환경공학과) ;
  • 강석태 (한국과학기술원 건설 및 환경공학과)
  • Received : 2016.11.15
  • Accepted : 2017.01.16
  • Published : 2017.01.31

Abstract

The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

본 연구의 목적은 메조공극 흡착제(Meso-Porous Adsorbent, MPA)에 대한 흡착특성을 평가하고, 상수원수 내 맛 냄새유발물질인 geosmin에 대한 흡착제거 특성을 회분식 실험을 통해 평가하는데 있다. 등온흡착에 대한 실험결과는 일반적으로 적용되고 있는 Langmuir식과 Freundlich식을 이용하여 분석하였으며, MPA는 Langmuir식과 Freundlich식 모두 잘 따르는 것으로 나타났다. 그리고 흡착속도 평가를 위해 1차 속도식과 2차 속도식을 각각 적용하였다. 본 흡착특성 평가결과 MPA를 이용할 경우 기존 입상활성탄에 비해 최대 흡착량이 7배 가량 낮은 것으로 나타났으나 1차 속도식 기준으로 흡착속도는 11배 이상 빠른 것으로 나타났다. 따라서 MPA를 정수장에 적용할 경우 짧은 EBCT 조건에서도 효과적으로 상수원수 내 geosmin을 제거할 수 있을 것으로 판단되며, 활성탄 공정에 비해 재생주기가 짧을 것으로 판단된다.

Keywords

References

  1. Lee, I. J., Lee, K. L., Lim, T. H., Park, J. J. and Cheon, S. U., "Determination of geosmin and 2-MIB in Nakdong River using headspace solid phase microextraction and GC-MS," Anal. Sci. Technol., 26(5), 326-332(2013). https://doi.org/10.5806/AST.2013.26.5.326
  2. Watson, S. B., "Aquatic taste and odor: a primary signal of drinking-water integrity," J. Toxicol. Environ. Health A., 67, 1779-1795(2004). https://doi.org/10.1080/15287390490492377
  3. Srinivasan, R. and Sorial, G. A., "Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review," J. Environ. Sci., 23(1), 1-13(2011). https://doi.org/10.1016/S1001-0742(10)60367-1
  4. Seo, P. W., Song, J. Y. and Jhung S. H., "Adsorptive removal of hazardous organic from water with metal-organic frameworks," Appl. Chem. Eng., 27(4), 358-365(2016). https://doi.org/10.14478/ace.2016.1048
  5. Balati, A., Shahbazi, A., Amini, M. M., Hashemi, S. H. and Jadidi, K., "Comparison of the efficiency of mesoporous silicas as absorbents for removing naphthalene from contaminated water," Eur. J. Environ. Sci., 4(1), 69-75(2014). https://doi.org/10.14712/23361964.2015.7
  6. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. T., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B. and Schlenker, J. L., "A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates," J. Am. Chem. Soc., 114, 10834(1992). https://doi.org/10.1021/ja00053a020
  7. Edmiston, P. L. and Underwood, L. A., "Absorption of dissolved organic species from water using organically modified silica that swells," Sep. Purif. Technol., 66, 532-540(2009). https://doi.org/10.1016/j.seppur.2009.02.001
  8. LaGrega, M. D., Buckingham, P. L., Evans, J. C. and Environmental Resources Management staff, Hazardous Waste management, 2ndEd, Mc Graw-Hill, USA, 1116-1126(2001).
  9. Froehner, S., Cardoso da Luz, E. and Maceno, M., Enhanced biodegradation of naphthalene and anthracene by modified vermiculite mixed with soil, Water, Air, & Soil Pollut., 202(1/4), 169-177(2009). https://doi.org/10.1007/s11270-008-9967-6
  10. Benjamin, M. M., Water chemistry, international edition, McGraw-Hill Higher Education, Singapore, pp. 550-627 (2002).
  11. Lagergren, S., "About the theory of so-called adsorption of soluble substance," K. Sven. Vetenskapsakad. Handl., 24, 1-39(1898).
  12. Kim, H., Lee, M. E., Kang, S. and Chung, J. W., "Thermodynamic analysis of phenol adsorption bu Powdered Activated Carbon," J. Korean Soc. Environ. Eng., 35(3), 220-225(2013). https://doi.org/10.4491/KSEE.2013.35.3.220
  13. Weber, J. and Miller, C. T., "Organic chemical movement over and through soil," In Sawhney, B. L., Brown, K. Reactions and movement of organic chemical, Soil Sci., Am. Madison. MI., pp. 305-334(1989).
  14. Ho, Y. S. and McKay, G., "The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat," Can. J. Chem. Eng., 76, 822-827(1998). https://doi.org/10.1002/cjce.5450760419
  15. Lee, J. J., "Study on equilibrium, kinetic and thermodynamic for adsorption of coomassi brilliant Blue G using Activated Carbon," Clean Technol., 20(3), 290-297(2013). https://doi.org/10.7464/ksct.2014.20.3.290
  16. Kim, H. I., Lee, M. E., Kang, S. T. and Chung, J. W., "Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon," J. Korean Soc. Environ. Eng., 35(3), 220-225(2013). https://doi.org/10.4491/KSEE.2013.35.3.220
  17. Brauch, V. and Schlnder, E. U., "The scale-up of activated carbon columns for water purification, based on results from batch tests-II : Theoretical and experimental determination of breakthrough curves in activated carbon columns," Chem. Eng. Sci., 30, 529-537(1975). https://doi.org/10.1016/0009-2509(75)80023-6
  18. Na, C. K. and Park, H. J., "Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(II)," J. Korean Soc. Environ. Eng., 33(11), 804-811(2011). https://doi.org/10.4491/KSEE.2011.33.11.804
  19. Lee, J. J., "Study on equilibrium, kinetic and thermodynamic for adsorption of Quinoline Yellow by Granular Activated Carbon," Clean Technol., 20(1), 35-41(2014). https://doi.org/10.7464/ksct.2014.20.1.035