DOI QR코드

DOI QR Code

Role of the transforming growth factor (TGF)-β1 and TGF-β1 signaling pathway on the pathophysiology of respiratory pneumococcal infections

  • Andrade, Maria Jose (Department of Microbiology, College of Medicine, Ewha Womans University) ;
  • Lim, Jae Hyang (Department of Microbiology, College of Medicine, Ewha Womans University)
  • Received : 2017.10.11
  • Accepted : 2017.11.20
  • Published : 2017.12.31

Abstract

Streptococcus pneumoniae, pneumococcus, is the most common cause of community-acquired pneumonia (CAP). CAP is an important infectious disease with high morbidity and mortality, and it is still one of the leading causes of death worldwide. Many genetic factors of the host and various environmental factors surrounding it have been studied as important determinants of the pathophysiology and outcomes of pneumococcal infections. Various cytokines, including transforming growth factor $(TGF)-{\beta}1$, are involved in different stages of the progression of pneumococcal infection. $TGF-{\beta}1$ is a cytokine that regulates a wide range of cellular and physiological functions, including immune and inflammatory responses. This cytokine has long been known as an anti-inflammatory cytokine that is critical to preventing the progression of an acute infection to a chronic condition. On the other hand, recent studies have unveiled the diverse roles of $TGF-{\beta}1$ on different stages of pneumococcal infections other than mitigating inflammation. This review summarizes the recent findings of the role of $TGF-{\beta}1$ on the pathophysiology of pneumococcal infections, which is fundamental to developing novel therapeutic strategies for such infections in immune-compromised patients.

Keywords

References

  1. Periselneris J, Jose RJ, Brown JS. Pulmonary immune response to Streptococcus pneumoniae. Shortness Breath 2014;3:147-58.
  2. Tan TQ. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. Clin Microbiol Rev 2012;25:409-19. https://doi.org/10.1128/CMR.00018-12
  3. Berical AC, Harris D, Dela Cruz CS, Possick JD. Pneumococcal vaccination strategies. An update and perspective. Ann Am Thorac Soc 2016;13:933-44. https://doi.org/10.1513/AnnalsATS.201511-778FR
  4. Torres A, Bonanni P, Hryniewicz W, Moutschen M, Reinert RR, Welte T. Pneumococcal vaccination: what have we learnt so far and what can we expect in the future? Eur J Clin Microbiol Infect Dis 2015;34:19-31. https://doi.org/10.1007/s10096-014-2208-6
  5. Wissinger E, Goulding J, Hussell T. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol 2009;21:147-55. https://doi.org/10.1016/j.smim.2009.01.005
  6. Feldman C, Anderson R. Review: current and new generation pneumococcal vaccines. J Infect 2014;69:309-25. https://doi.org/10.1016/j.jinf.2014.06.006
  7. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015;282:20143085. https://doi.org/10.1098/rspb.2014.3085
  8. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004;29:265-73. https://doi.org/10.1016/j.tibs.2004.03.008
  9. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577-84. https://doi.org/10.1038/nature02006
  10. Sporn MB. The early history of TGF-beta, and a brief glimpse of its future. Cytokine Growth Factor Rev 2006;17:3-7. https://doi.org/10.1016/j.cytogfr.2005.09.012
  11. Fujio K, Komai T, Inoue M, Morita K, Okamura T, Yamamoto K. Revisiting the regulatory roles of the TGF-${\beta}$ family of cytokines. Autoimmun Rev 2016;15:917-22. https://doi.org/10.1016/j.autrev.2016.07.007
  12. Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-${\beta}$: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 2017;9. pii: a022236.
  13. Pittet JF, Griffiths MJ, Geiser T, Kaminski N, Dalton SL, Huang X, et al. TGF-beta is a critical mediator of acute lung injury. J Clin Invest 2001;107:1537-44. https://doi.org/10.1172/JCI11963
  14. Budi EH, Duan D, Derynck R. Transforming growth factor-${\beta}$ receptors and Smads: regulatory complexity and functional versatility. Trends Cell Biol 2017;27:658-72. https://doi.org/10.1016/j.tcb.2017.04.005
  15. Jenkins G. The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 2008;40:1068-78. https://doi.org/10.1016/j.biocel.2007.11.026
  16. Travis MA, Sheppard D. TGF-${\beta}$ activation and function in immunity. Annu Rev Immunol 2014;32:51-82. https://doi.org/10.1146/annurev-immunol-032713-120257
  17. Song Y, Pittet JF, Huang X, He H, Lynch SV, Violette SM, et al. Role of integrin alphav beta6 in acute lung injury induced by Pseudomonas aeruginosa. Infect Immun 2008;76:2325-32. https://doi.org/10.1128/IAI.01431-07
  18. Moustakas A, Heldin CH. The regulation of TGF beta signal transduction. Development 2009;136:3699-714. https://doi.org/10.1242/dev.030338
  19. Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-translational modifications of the TAK1-TAB complex. Int J Mol Sci 2017;18. pii: E205.
  20. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res 2009;19:128-39. https://doi.org/10.1038/cr.2008.328
  21. Shen X, Hu PP, Liberati NT, Datto MB, Frederick JP, Wang XF. TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol Biol Cell 1998;9:3309-19. https://doi.org/10.1091/mbc.9.12.3309
  22. Itoh S, ten Dijke P. Negative regulation of TGF-beta receptor/ Smad signal transduction. Curr Opin Cell Biol 2007;19:176-84. https://doi.org/10.1016/j.ceb.2007.02.015
  23. Xu P, Liu J, Derynck R. Post-translational regulation of TGF-${\beta}$ receptor and Smad signaling. FEBS Lett 2012;586:1871-84. https://doi.org/10.1016/j.febslet.2012.05.010
  24. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 2009;22:240-73. https://doi.org/10.1128/CMR.00046-08
  25. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010;10:427-39. https://doi.org/10.1038/nri2779
  26. Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol 2016;38:471-82. https://doi.org/10.1007/s00281-016-0558-0
  27. Hornef MW, Wick MJ, Rhen M, Normark S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol 2002;3:1033-40. https://doi.org/10.1038/ni1102-1033
  28. Hirsch CS, Yoneda T, Averill L, Ellner JJ, Toossi Z. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor-beta 1. J Infect Dis 1994;170:1229-37. https://doi.org/10.1093/infdis/170.5.1229
  29. Tsai WC, Tsai JJ, Chen CJ, Yen JH, Ou TT, Liu HW. Monocyte-derived cytokine--IL-12, TGF-beta 1 and TNF-alpha in patients with tuberculosis. Kaohsiung J Med Sci 2002;18:17-22.
  30. Borthwick LA, Sunny SS, Oliphant V, Perry J, Brodlie M, Johnson GE, et al. Pseudomonas aeruginosa accentuates epithelial-to-mesenchymal transition in the airway. Eur Respir J 2011;37:1237-47. https://doi.org/10.1183/09031936.00088410
  31. Kernacki KA, Goebel DJ, Poosch MS, Hazlett LD. Early cytokine and chemokine gene expression during Pseudomonas aeruginosa corneal infection in mice. Infect Immun 1998;66:376-9.
  32. Dorfman R, Sandford A, Taylor C, Huang B, Frangolias D, Wang Y, et al. Complex two-gene modulation of lung disease severity in children with cystic fibrosis. J Clin Invest 2008;118:1040-9.
  33. Yang JJ, Wang DD, Sun TY. Flagellin of Pseudomonas aeruginosa induces transforming growth factor beta 1 expression in normal bronchial epithelial cells through mitogen activated protein kinase cascades. Chin Med J (Engl) 2011;124:599-605.
  34. Clarke TB, Francella N, Huegel A, Weiser JN. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe 2011;9:404-14. https://doi.org/10.1016/j.chom.2011.04.012
  35. Francis SM, Tan ME, Fung PR, Shaw JG, Semmler AB, Nataatmadja M, et al. Peripheral compartment innate immune response to Haemophilus influenzae and Streptococcus pneumoniae in chronic obstructive pulmonary disease patients. Innate Immun 2013;19:428-37. https://doi.org/10.1177/1753425912466926
  36. Diab A, Zhu J, Lindquist L, Wretlind B, Link H, Bakhiet M. Cytokine mRNA profiles during the course of experimental Haemophilus influenzae bacterial meningitis. Clin Immunol Immunopathol 1997;85:236-45. https://doi.org/10.1006/clin.1997.4430
  37. Hebda PA, Piltcher OB, Swarts JD, Alper CM, Zeevi A, Doyle WJ. Cytokine profiles in a rat model of otitis media with effusion caused by eustachian tube obstruction with and without Streptococcus pneumoniae infection. Laryngoscope 2002;112:1657-62. https://doi.org/10.1097/00005537-200209000-00024
  38. Ishinaga H, Jono H, Lim JH, Kweon SM, Xu H, Ha UH, et al. TGF-beta induces p65 acetylation to enhance bacteriainduced NF-kappaB activation. EMBO J 2007;26:1150-62. https://doi.org/10.1038/sj.emboj.7601546
  39. Ishinaga H, Jono H, Lim JH, Komatsu K, Xu X, Lee J, et al. Synergistic induction of nuclear factor-kappaB by transforming growth factor-beta and tumour necrosis factor-alpha is mediated by protein kinase A-dependent RelA acetylation. Biochem J 2009;417:583-91. https://doi.org/10.1042/BJ20080781
  40. Mikami F, Lim JH, Ishinaga H, Ha UH, Gu H, Koga T, et al. The transforming growth factor-beta-Smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacteria via a dual mechanism involving functional cooperation with NF-kappaB and MAPK phosphatase 1-dependent negative cross-talk with p38 MAPK. J Biol Chem 2006;281:22397-408. https://doi.org/10.1074/jbc.M602124200
  41. Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci 2005;118:4901-12. https://doi.org/10.1242/jcs.02594
  42. Beisswenger C, Coyne CB, Shchepetov M, Weiser JN. Role of p38 MAP kinase and transforming growth factor-beta signaling in transepithelial migration of invasive bacterial pathogens. J Biol Chem 2007;282:28700-8. https://doi.org/10.1074/jbc.M703576200
  43. Beisswenger C, Lysenko ES, Weiser JN. Early bacterial colonization induces toll-like receptor-dependent transforming growth factor beta signaling in the epithelium. Infect Immun 2009;77:2212-20. https://doi.org/10.1128/IAI.01224-08
  44. Olsen CO, Isakson BE, Seedorf GJ, Lubman RL, Boitano S. Extracellular matrix-driven alveolar epithelial cell differentiation in vitro. Exp Lung Res 2005;31:461-82. https://doi.org/10.1080/01902140590918830
  45. Bhaskaran M, Kolliputi N, Wang Y, Gou D, Chintagari NR, Liu L. Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem 2007;282:3968-76.
  46. Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010;298:L715-31. https://doi.org/10.1152/ajplung.00361.2009
  47. Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev Cell Mol Biol 2012;294:171-221.
  48. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 2006;103:13180-5. https://doi.org/10.1073/pnas.0605669103
  49. Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, et al. CYLD negatively regulates transforming growth factor-${\beta}$-signalling via deubiquitinating Akt. Nat Commun 2012;3:771. https://doi.org/10.1038/ncomms1776
  50. Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2017 [Epub ahead of print].
  51. Angsana J, Chen J, Liu L, Haller CA, Chaikof EL. Efferocytosis as a regulator of macrophage chemokine receptor expression and polarization. Eur J Immunol 2016;46:1592-9. https://doi.org/10.1002/eji.201546262
  52. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3:23-35. https://doi.org/10.1038/nri978
  53. Condon TV, Sawyer RT, Fenton MJ, Riches DW. Lung dendritic cells at the innate-adaptive immune interface. J Leukoc Biol 2011;90:883-95. https://doi.org/10.1189/jlb.0311134
  54. Gruschwitz MS, Hornstein OP. Expression of transforming growth factor type beta on human epidermal dendritic cells. J Invest Dermatol 1992;99:114-6. https://doi.org/10.1111/1523-1747.ep12611890
  55. de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 1998;160:1666-76.
  56. Worthington JJ, Fenton TM, Czajkowska BI, Klementowicz JE, Travis MA. Regulation of TGF${\beta}$ in the immune system: an emerging role for integrins and dendritic cells. Immunobiology 2012;217:1259-65. https://doi.org/10.1016/j.imbio.2012.06.009
  57. Travis MA, Reizis B, Melton AC, Masteller E, Tang Q, Proctor JM, et al. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 2007;449:361-5. https://doi.org/10.1038/nature06110
  58. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 2005;6:600-7. https://doi.org/10.1038/ni1197
  59. Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 2012;181:8-18. https://doi.org/10.1016/j.ajpath.2012.03.044
  60. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008;8:523-32. https://doi.org/10.1038/nri2343
  61. Caridade M, Graca L, Ribeiro RM. Mechanisms underlying CD4+ Treg immune regulation in the adult: from experiments to models. Front Immunol 2013;4:378.
  62. Schmidt-Weber CB, Blaser K. Regulation and role of transforming growth factor-beta in immune tolerance induction and inflammation. Curr Opin Immunol 2004;16:709-16. https://doi.org/10.1016/j.coi.2004.09.008
  63. Yoshimura A, Wakabayashi Y, Mori T. Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem 2010;147:781-92. https://doi.org/10.1093/jb/mvq043
  64. Ouyang W, Oh SA, Ma Q, Bivona MR, Zhu J, Li MO. TGF-${\beta}$ cytokine signaling promotes CD8+ T cell development and low-affinity CD4+ T cell homeostasis by regulation of interleukin-7 receptor ${\alpha}$ expression. Immunity 2013;39:335-46. https://doi.org/10.1016/j.immuni.2013.07.016
  65. Oh SA, Li MO. TGF-${\beta}$: guardian of T cell function. J Immunol 2013;191:3973-9. https://doi.org/10.4049/jimmunol.1301843
  66. Arsura M, Wu M, Sonenshein GE. TGF beta 1 inhibits NFkappa B/Rel activity inducing apoptosis of B cells: transcriptional activation of I kappa B alpha. Immunity 1996;5:31-40. https://doi.org/10.1016/S1074-7613(00)80307-6
  67. Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004;4:144-54. https://doi.org/10.1016/S1473-3099(04)00938-7
  68. Kohler TP, Scholz A, Kiachludis D, Hammerschmidt S. Induction of central host signaling kinases during pneumococcal infection of human THP-1 cells. Front Cell Infect Microbiol 2016;6:48.
  69. Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015;16:27-35. https://doi.org/10.1038/ni.3045
  70. Rai P, He F, Kwang J, Engelward BP, Chow VT. Pneumococcal pneumolysin induces DNA damage and cell cycle arrest. Sci Rep 2016;6:22972. https://doi.org/10.1038/srep22972
  71. Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008;6:288-301. https://doi.org/10.1038/nrmicro1871
  72. Attali C, Durmort C, Vernet T, Di Guilmi AM. The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect Immun 2008;76:5350-6. https://doi.org/10.1128/IAI.00184-08
  73. Bergmann S, Lang A, Rohde M, Agarwal V, Rennemeier C, Grashoff C, et al. Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells. J Cell Sci 2009;122:256-67. https://doi.org/10.1242/jcs.035600
  74. Elm C, Braathen R, Bergmann S, Frank R, Vaerman JP, Kaetzel CS, et al. Ectodomains 3 and 4 of human polymeric immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 2004;279:6296-304. https://doi.org/10.1074/jbc.M310528200
  75. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 2009;119:1638-46. https://doi.org/10.1172/JCI36759
  76. Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, et al. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014;27:691-726. https://doi.org/10.1128/CMR.00118-13
  77. Mizrachi-Nebenzahl Y, Lifshitz S, Teitelbaum R, Novick S, Levi A, Benharroch D, et al. Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host. Clin Exp Immunol 2003;134:23-31. https://doi.org/10.1046/j.1365-2249.2003.02261.x
  78. Neill DR, Coward WR, Gritzfeld JF, Richards L, Garcia-Garcia FJ, Dotor J, et al. Density and duration of pneumococcal carriage is maintained by transforming growth factor ${\beta}$1 and T regulatory cells. Am J Respir Crit Care Med 2014;189:1250-9. https://doi.org/10.1164/rccm.201401-0128OC
  79. Hoe E, Boelsen LK, Toh ZQ, Sun GW, Koo GC, Balloch A, et al. Reduced IL-17A secretion is associated with high levels of pneumococcal nasopharyngeal carriage in Fijian children. PLoS One 2015;10:e0129199. https://doi.org/10.1371/journal.pone.0129199
  80. Basha S, Kaur R, Mosmann TR, Pichichero ME. Reduced thelper 17 responses to streptococcus pneumoniae in infection-prone children can be rescued by addition of innate cytokines. J Infect Dis 2017;215:1321-30. https://doi.org/10.1093/infdis/jix090
  81. Lim JH, Stirling B, Derry J, Koga T, Jono H, Woo CH, et al. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity 2007;27:349-60. https://doi.org/10.1016/j.immuni.2007.07.011
  82. Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol 2013;93:875-81. https://doi.org/10.1189/jlb.1012512
  83. Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N. TGF${\beta}$ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 2012;13:31. https://doi.org/10.1186/1471-2172-13-31
  84. Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF. Axin and GSK3- control Smad3 protein stability and modulate TGFsignaling. Genes Dev 2008;22:106-20. https://doi.org/10.1101/gad.1590908
  85. Frank JA, Matthay MA. TGF-${\beta}$ and lung fluid balance in ARDS. Proc Natl Acad Sci U S A 2014;111:885-6. https://doi.org/10.1073/pnas.1322478111
  86. Peters DM, Vadasz I, Wujak L, Wygrecka M, Olschewski A, Becker C, et al. TGF-${\beta}$ directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A 2014;111:E374-83. https://doi.org/10.1073/pnas.1306798111
  87. Peteranderl C, Sznajder JI, Herold S, Lecuona E. Inflammatory responses regulating alveolar ion transport during pulmonary infections. Front Immunol 2017;8:446.
  88. Lutter R, Spiteri M. Current perspectives in epithelial cell injury and repair: consequences for epithelial functions. Eur Respir Rev 2005;14:126-30. https://doi.org/10.1183/09059180.05.00009701