DOI QR코드

DOI QR Code

Effect of Graphite Electrode Geometry and Combination on Nanocarbon Synthesis using Underwater Discharge Plasma

수중 방전 플라즈마를 이용한 탄소나노소재 합성 시 흑연전극의 형상과 조합의 영향

  • Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 조성일 (강원대학교 대학원 신소재공학과) ;
  • 이병주 (강원대학교 대학원 신소재공학과) ;
  • 정구환 (강원대학교 대학원 신소재공학과강원대학교 공과대학 나노응용공학과)
  • Received : 2017.04.14
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

We investigated the effect of graphite electrode geometry and combination on nanocarbon material synthesis using underwater discharge plasma(UDP). The UDP system consists of two graphite electrodes and beaker filled with de-ionized water. A high voltage of 15 kV with a frequency of 25 kHz is applied to produce UDP using an alternating-current power source. The UDP system with conical electrodes produced the largest amount of products due to the concentration of electrical fields between electrodes. In addition, hollow-shaped stationary electrode and conical-shaped moving electrode stores discharge-induced bubbles and maintains longer reaction time. We found from Raman spectroscopy and electron microscopy that high quality carbon nanomaterials including carbon nanotubes are synthesized by the UDP system.

Keywords

References

  1. H. Kroto, J. Heath, S. Obrien, R. Curl, and R. Smalley, $C_{60}$:Buckminsterfullerene, Nature 318 (1985) 162-163. https://doi.org/10.1038/318162a0
  2. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
  4. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388 (1997) 756-758. https://doi.org/10.1038/41972
  5. T. Guo, P. Nikolaev, A. Gthess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization, Chem. Phys. Lett. 243 (1995) 49-54. https://doi.org/10.1016/0009-2614(95)00825-O
  6. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283 (1999) 512-514. https://doi.org/10.1126/science.283.5401.512
  7. N. Sano, H.Wang, M. Chhowalla, M. I. Alexandrou, and G. A. J. Amaratunga, Synthesis of carbon onions in water, Nature 414 (2001) 506-507.
  8. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, and K. Iimura, Properties of carbon onions produced by an arc discharge in water, J. Appl. Phys. 92 (2002) 2783-2788. https://doi.org/10.1063/1.1498884
  9. X. Li, H. Zhu, B. Jiang, J. Ding, C. Xu, and D. Wu, High-yield synthesis of multi-walled carbon nanotubes by water-protected arc discharge method, Carbon 411 (2002) 1645-1687.
  10. H. Lange, M. Sioda, A. Huczko, Y. Q. Zhu, H. W. Kroto, and D. R. M. Walton, Nanocarbon production by arc discharge in water, Carbon 41 (2003) 1617-1623. https://doi.org/10.1016/S0008-6223(03)00111-8
  11. Y. Ichino, K. Mitamura, N. Saito, and O. Takai, Characterization of platinum catalyst supported on carbon nanoballs prepared by solution plasma processing, J. Vac. Sci. & Technol. A 27 (2009) 826-830. https://doi.org/10.1116/1.3077285
  12. T. Charinpanitkkul, W. Tanthapanichakoon, and N. Sano, Carbon nanostrucutres syntehsized by arc discharge between carbon and iron electrodes in liquid nitrogen, Curr. Appl. Phys. 9 (2009) 629-632. https://doi.org/10.1016/j.cap.2008.05.018
  13. J. Kang, O. Li, and N. Saito, Synthesis of strucutre-controlled carbon nano spheres by solution plasma process, Carbon 60 (2013) 292-298. https://doi.org/10.1016/j.carbon.2013.04.040
  14. B. J. Lee and G. H. Jeong, Ferritin-mixed solution plasma system yielding low-dimensional carbon nanomaterials and their application to flexible conductive paper, Curr. Appl. Phys. 15 (2015) 1506-1511. https://doi.org/10.1016/j.cap.2015.08.022
  15. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47-99. https://doi.org/10.1016/j.physrep.2004.10.006
  16. B. J. Lee and G. H. Jeong, Graphene doping by ammonia plasma surface treatment, J. Kor. Inst. Surf. Eng. 48 (2015) 163-168. https://doi.org/10.5695/JKISE.2015.48.4.163
  17. G. Saito and T. Akiyama, Nanomaterial synthesis using plasma generation in liquid, J. Nanomaterials 15 (2015) 1-21.